ISSN 0361-7688, Programming and Computer Software, 2015, Vol. 41, No. 4, pp. 224—230. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © A. Pelenitsyn, 2015, published in Programmirovanie, 2015, Vol. 41, No. 4.

Associated Types and Constraint Propagation
for Generic Programming in Scala

A. Pelenitsyn
Southern Federal University, ul. B. Sadovaya 105/42, Rostov-on-Don, 344006 Russia
e-mail: apel @sfedu.ru
Received March 5, 2015

Abstract—Generic programming is a programming paradigm for creation of highly resuable software com-
ponents through decoupling algorithms from specific data structures which are being processed. The rise of
research on ways of handling generic programming in various programming languages took place last years.
We analyze and develop a number of generic programming features, in particular associated types and con-
straint propagation, for the Scala programming language designed by Martin Odersky in Ecole Polytechnique

Fédérale de Lausanne.
DOI: 10.1134/S0361768815040064

1. INTRODUCTION

Generic programming is a programming paradigm
for creation of highly reusable software components
through decoupling algorithms from specific data
structures which are being processed [1].

Various programming languages provide facilities for
generic programming. We observe three approaches to
express ideas of generic programming in modern pro-
gramming languages. The first one is to employ current
language features. Examples of this are C++ templates
and generic types in common object-oriented lan-
guages (Java, C#). The second approach is to build
corresponding language extensions (e.g., for C# lan-
guage in [2] and JavaGlI extension from [3]). The third
approach is to develop new programming languages
which possesses desired features from the very begin-
ning. Main example here is Scala programming lan-
guage, though we can mention other languages like
Agda and Coq mostly targeted to proof assistance and
hence used mainly in academics.

One notable example of language with well-devel-
oped generic programming facilities is Haskell. It was
developed as a language with one major compiler
opened for experiments in type theory. Some results of
these are being included in new revisions of a language
standard. Even basic Haskell features like type classes
and widely used parametric polymorphism present
well-developed framework for application of generic
programming. Thus, Haskell satisfy both, first and
second approaches to generic programming imple-
mentation mentioned above. A number of nonstand-
ard but widely adopted extensions for Glasgow
Haskell Compiler (GHC), such as multi-parameter

! The article was translated by the authors.

type classes and functional dependencies strengthen
language positions in this area.

Historically first programming language widely
adopted principles of generic programming was C++.
Unconstrained C++-templates give much freedom in
employing type parameters, basic tool of generic pro-
gramming. Though actual usage of templates has a
number of well-known drawbacks, such as complicated
even unreadable error messages and hence tough
debugging process, as well as unavailability of separate
translation for generic units (functions and classes tem-
plates). New language standard, known as C++11,
should have improved support for generic program-
ming in C++. Though the “Remove-decision”
banned so called concepts proposal and ruined these
hopes a lot. Nevertheless two reference implementa-
tion for generic programming used in research today
are that of C++ and Haskell: they give main examples
to compare with for evaluating new approaches to
generic paradigm.

Indeed, proposed in [2] C# extension is tested
against an example from Boost Graph Library (BGL)
written in C++. The main idea there is how to over-
come difficulties arise when use common C# language
for implementation of a BGL fragment. The extension
consists of associated types and generic type constrain
propagation.

One of the most outstanding feature of Scala pro-
gramming language, implicits, is described in [4]. Sev-
eral tasks of various difficulty are implemented via
implicits there: from modeling of Haskell type classes
which shows Scala ability to support of generic pro-
gramming to type-level computations such as compu-
tation of a type for function

zipWithN (a; = a, = ..

([a;] — [a] —» .. >

- a,) —
[a,])

224



ASSOCIATED TYPES AND CONSTRAINT PROPAGATION

Here n is a parameter. The function takes a func-
tion from n — 1 parameter and » — 1 lists and returns a
list of results after application the function given to
corresponding elements of the lists. This type-level
computation task resembles one discussed in [5] where
multivariate polynomials implemented in C++ using
similar ideas.

While presenting one particular language feature,
[4] deduce a number of general properties of Scala
language concerning generic programming. In partic-
ular, the paper extends comparative table of handling
generic programming features in modern program-
ming languages. The first version of the table was pub-
lished in seminal paper [6], which didn’t consider
Scala language and explored the ways of handling an
example from above mentioned BGL library in num-
ber of programming languages.

An analysis of possible implementation for frag-
ment of BGL in terms of extended C# is done in [2].
We perform here similar analysis for Scala program-
ming language, which appears more promissory by
means of generic programming. We explore Scala ele-
ments which allow for more succinct implementation
of ideas of associated types and constraint propagation
when solving a number of typical problems of generic
programming. We evaluate our solution on example
from [2].

The first main result of our paper is application of
refinement types for description of constraints on
associated types. Next, we show how to eliminate
parametric polymorphism there with path-dependent
method types. This allows for more clear and succinct
solution for task considered in [2].

The second main result is finding and removal of a
particular flaw from [2], namely the absence of retro-
active modeling property which was listed as one of
criteria for support of generic programming in [6].
General approach for handling this in Scala is consid-
ered in [4], we show how to adapt it in typical setting
of industrial-strength programming library.

Our results expand the description of Scala support
for generic programming given in [4]. We use more
accessible example which at the same time is closer to
industrial problems than in [4], namely a fragment of
BGL. More realistic example motivates usage of Scala
features which weren’t involved in such kind of prob-
lems earlier (refinement types) or were used in a minor
way (abstract types, path-dependent types). We com-
pare construction obtained with results from [2], as
well as with some generic programming tools from
C++ and Haskell.

In [7], Section 6 Related work it is noted that Scala
has some prospects in respect of generic program-
ming. Authors of [7] mention their plans on perform-
ing research on associated types and implicits explor-
ing these prospects, but no evidence of realization of
the plans found, so we perform such research in this

paper.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41

225

The paper consists of introduction, three sections
and conclusion. In Section 2 we recall results from [2]
in convenient way: a fragment of BGL is described, a
C#-implementation (including extensions from [2])
for it is given. Moreover, we discuss the weaknesses of
these results. In Section 3 we demonstrate Scala fea-
tures for generic programming using the same BGL
example. We note Scala advantages over extended C#
from [2]. In Section 4 we note some digression on
generic programming principles taken in [2] and con-
struct solution for this using ideas from [4]. Also, we
perform some analysis here about overhead of using
generic programming form both, client’s and library
author’s points of view. At the end of the section we
give some remarks on the same topic concerning other
programming languages. Two main results of the paper
described above are in Section 3 and Section 4 corre-
spondingly.

2. ABGL FRAGMENT AND ITS IMPLEMEN-
TATION BY MEANS OF EXTENDED C#

For the purpose of illustration generic facilities of
extended C# the following function from BGL (C++)
is taken in [2]:

template (class Graph)

typename Graph::vertex type

first neighbor (Graph g, typename
Graph::vertex type v)

{return target (current (out edges (v,
g)))i:}

Given a graph object and one of its vertex this func-
tion returns some adjacent vertex (“first” in some
ordering). One obvious technical drawback of this
code is the mandatory typename keyword desig-
nated nested type vertex type from class member
of type parameter Graph. More fundamental flaw of
unconstrained templates of C++ visible here is that
header and body of the function contain lots of
assumptions about type parameter Graph, which are
not expressed directly but rather outlined in documen-
tation. Function client should either read through
documentation carefully or take cut-and-try approach
running compiler and trying to guess about those
assumptions from weird compilation error messages.
Compilation time in C++ is long and though huge
efforts were performed to make compiler messages
more clear, second approach still poses heavy burden
on a programmer.

The way taken by C++ community to overcome
the problem is to develop formalized documentation
for generic libraries. Central notion on the way is con-
cept—a set of constraints put on type parameters of
generic functions and classes. Enhancing documenta-
tion is quite limited though. Therefore an attempt to
add concepts directly to language syntax was made (cf.
[8] for complete overview of this process with relevant
references). Eventually concepts proposal was post-
poned and did not find its way to C++11 standard.

No. 4 2015



226

We consider this as C++'s failure in enhancing generic
programming support [11].

Alternative for unconstrained templates of C++ in
handling generic programming could be found in
modern object-oriented languages, e.g. Java and C#.
The difference between the two (C++ and Java/C#) is
well-studied in type theory: C++ support parametric
impredicative polymorphism while Java/C# imple-
ment bounded polymorphism formalized in terms of

PELENITSYN

System F_—the union of classical System F and sub-
typing [9]. The difference could be expressed as fol-
lows: allowed everything that is not forbidden (uncon-
strained templates) versus forbidden everything that is
not allowed (bounded polymorphism). Second
approach leads to increase in amount of type parame-
ters and more precise description their dependencies.
It turns out that basic facilities of Java/C# are not
well-suited for this. Consider example of above men-
tioned function reimplemented in standard C#.

G Vertex first neighbor(G, G Vertex, G Edge, G OutEdgelterator)

(G g,
where G
G_Edge
G_OutEdgelterator

G Vertex v)

IncidenceGraph(G Vertex, G Edge, G OutEdgeIterator),
GraphEdge(G_Vertex),
IEnumerable(G_Edge)({

return g.out edges(v) .Current.target();

}

As before there are lots of assumptions for type
parameters in first neighbor. Now they
reflected directly in function signature in contrast to
C++ version. Second obvious but merely stylistic dif-
ference from C++ is that function calls become class
methods calls.

Let us exemplifiy assumption about type of param-
eter g in function above: the type should allow for call
out edges method. In pure object-oriented language
this kind of assumptions usually fulfilled through imple-
mentation of an interface. We call this interface Tnci-
denceGraph. The method returns an iterator for a

collection of adjacent edges and we have to introduce
another type parameter G OutEdgeIterator
implementing standard interface IEnumerable.
The latter one has a property Current which gives
access to the current edge, and so on.

First problem arose in this solution is dramatic
increase in amount of type parameters. Next problem
become evident while inspecting definition of any
interface used. They are generic interfaces demanding
explicit constraints for type parameters—ijust the
same ones we have already used in definition of above
mentioned function.

interface IncidenceGraph(Vertex, Edge, OutEdgelterator)

where Edge
OutEdgelterator

GraphEdge(Vertex),
IEnumerable(Edge){

OutEdgelterator out edges (Vertex v);

int out degree (Vertex v);

Certainly we would like to write down Edge and
OutEdgeIterator constraints only once, when
defining TncidenceGraph type, augmenting the
need to repeat them in every function similar to
first neighbour.

Both problems mentioned are solved in [2] through
extension of C# language with associated types and
automatic constrain propagation correspondingly.
Associated types feature allow for declaration of
abstract (not defined) types inside interfaces along
with usual abstract methods (without definition).
These abstract type members should be made specific
in class implementing interface just like usual abstract
methods are. The notion “abstract type members”
used in Scala looks more thorough than “associated
types” from [2] for us.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41

Once adding associated types to interfaces one
need to define constraints on them like it is done for
type parameters. One traditional form of constraints in
OO0O-languages is subtype constraints: type T should be
subtype of some specific type. It turns out that another
useful form of constraints is equality constraints for
type parameters or associated types. For example type
parameters (or associated types) Vertex used in
GraphEdge interface and in IncidenceGraph
interface should be equal if used in definition of the
same function.

Constraints propagation is a tool allowing compiler
to use type constraints from various interfaces for
proof that code using these interfaces is valid in type
system.

No. 4 2015



ASSOCIATED TYPES AND CONSTRAINT PROPAGATION

interface GraphEdge {

227

type Vertex; /7 (1)
Vertex source();
Vertex target():
}
interface IncidenceGraph {
type Vertex; // (1)
type Edge : GraphEdge; /7 (2)
type OutEdgelterator : IEnumerable<Edge>; // (2)
require Vertex == Edge::Vertex; // (3)

OutEdgelIterator out_edges (Vertex v
int out degree (Vertex v);

::vertex type first neighbor<G>(G g, G:

)

:Vertex v) where G : IncidenceGraph ({

return g.out edges (v).Current.target();

Fig. 1.

trait GraphEdge {
type Vertex
def source: Vertex
def target: Vertex

}

trait IncidenceGraph ({

/7 (1)

type Vertex // (1)

type Edge <: GraphEdge { type Vertex = IncidenceGraph.this.Vertex} // (3)
type OutEdgelterator <: Iterator [Edge] /7 (2)
def out edges(v: Vertex): OutEdgelterator

def out degree(v: Vertex): Int
}

def first neighbor(g: IncidenceGraph) (v:

g.out edges(v) .next.target
}

g.Vertex): g.Vertex {

Fig. 2.

Following code obtained in [2] for initial example
function on extended C# (see Fig. 1) reflects these
ideas.

Labels (1) point to associated types used instead of
type parameters. Labels (2) point to subtype con-
straints. Labels (3) point to equality constraints.

3. NESTED TYPE DECLARATIONS
AND GENERIC CONSTRAINTS IN SCALA

Scala has nested type declarations (so called abstract
type members) from the very beginning. It also has a
number of ways for describing constraints on abstract
types and type parameters for interfaces and methods.
Moreover Scala modifies notion of interface into so
called trait. Traits could be used as usual interfaces
known from Java/C#. But traits can also contain
method implementation. We do not use this facility in
the paper but one interested in ways of handling clas-

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41

sical problems of multiple inheritance in Scala could
learn it from any Scala book, e.g. [10].

Scala compiler has thorough ability for type analy-
sis and the feature of constraint propagation consid-
ered in [2] comes here for no price: if constraints are
placed inside a trait they will be counted when object
of the trait is used. As a result we can build solution by
no means weaker than in [2], see Fig. 2.

Class or trait member types in Scala can be specific:
type Vertex Int

In this case they act as usual type aliases (like #ype-
defin C++). Another possibility is abstract type mem-
bers labeled (1) on Fig. 2. They can be made specific
in trait subtypes.

Abstract type in Scala can be bounded (cf. (2) on
Fig. 2). Declaration

type A <: B // (4)

guarantees that any specialization of type A would
be subtype of B.

No. 4 2015



228

Nice evidence of maturity of Scala type system is
the fact that subtype constraints could be expressed
without any dedicated keywords. This contrasts with
what we saw in [2] with require.

Let us consider (3) from Fig. 2 closer. The whole
expression has a form of (4) where B is an example of
refinement type:

GraphEdge { type Vertex =
denceGraph.this.Vertex } // (5)

The type constitutes supertype of any type which
extends GraphEdge and define its Vertex type
member just as a Vertex in current object (this)
implementing IncidenceGraph trait. It seems that
expression IncidenceGraph.this.Vertex is
overcomplicated compared with associated type
access from [2]. In Scala one have so called #ype pro-
Jjections which look more familiar: Incidence-
Graph#Vertex. This expressions describe all type
members Vertex in any type extending Inci-
denceGraph. It is clear that such wide notion is not
suitable for the task: if one graph type defines its verti-
ces as Int and other graph type prefers String then
first neighbor method working with first graph
type should return an integer ant not a string.

Inci-

An ability to describe constraints on associated
types is listed as a criteria for support of generic pro-
gramming [6]. As far as we know the usage of refine-
ment types wasn’t used before with this purpose in
Scala.

Thus, (5) describes exactly the set of types we want
to use for Edge in (3). Last thing to consider in (3) is
the following. The <: operator in Scala language nor-
mally denotes subtype relation. As (5) express desired
set of types we could probably think of using = instead
of <:. But = turn whole (3) in an alias for exactly the
huge (5) expression instead of abstract type. So we def-
initely should use <: and not = in (3).

In first neighbor’s header we do not need
type parameters like in [2] where type parameter G
gives access to nested type G: : Vertex. In Scala one
use an object reference for this purpose (g in this case)
and not type projections like G#Vertex due to above
mentioned problem with too wide notion behind this
expression. If parameter type depends on type of other
parameter (like type of v in this case depends on type
of g) one should place them in different argument
lists, i.e. different pair of parentheses—it is a language
restriction, so called path-dependent method types.

A notion of path plays major role in Scala type sys-
tem. A path is an expression in form A.B.C.D. Only
four types of identifiers allowed for A, B, ...: a pack-
age, an object, val-value, this/super and their variants
with type arguments. If a path is valid, one say that the
path define stable type, that is specific type known at
compile time. This distinguishes paths from projec-
tions like G#Vertex which could have been used in
first neighbor.

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41

PELENITSYN

def first neighbor[G <: Incidence-
Graph] (g: G, v: G#Vertex) : G#Vertex =

g.out edges (v) .next.target

This variant goes closer to that from [2] where there is
no differences like one have in Scala with paths and pro-
jections. Though this results in weaker type control as we
mentioned above. Also when using projection approach
we have to change declaration of out edges: this
method should accept projection too. Overall result is
more code and less type control. This does not look
inviting.

Main OO-languages like C++, Java and C# do not
have features like abstract type members, so they do
not face distinction like that between paths and pro-
jections. One usually talk about type qualification in
these languages.

4. IMPLICITS AS A TOOL FOR PUTTING
CONSTRAINTS ON TYPE PARAMETERS

Solution from previous section comes quite close
to one described in [2]. It is possible due to Scala fea-
tures: abstract type members, refinement types and
path-dependent method types. This solution largely
utilizes subtyping in various forms and does not use
type parameters. This style more common for object-
oriented rather than generic approach. Consequently,
it does not satisfy some important requirements for
generic programming code. The one we would like to
discuss here is retroactive modeling. In our example
this means inability of first neighbor to work
with types which do not extend ITncidenceGraph
trait (do not implement mandatory interface in more
usual terms). This is an implication of OO-approach.
The problem arise for a first neighbor’s client
who employ custom graph type which do not “know”
about IncidenceGraph trait and which is not sub-
ject of change (due to, e.g., backward compatibility
requirements). The problem is solved by means of
generic approach if a programming language supports
it on considerable level. In [4] it is shown how to solve
the problem in Scala. We study such solution in spe-
cific case from [2] using ideas from [4].

A set of constraints on type parameters is usually
expressed without subtyping relation in generic pro-
gramming. Instead a set of constraints is factored out
to separate entity called a concept or a type class. First
term comes from C++-community and second one is
from Haskell. We will use first one here. One should
define concept model to describe how specific type sat-
isfy concept requirements. Note that this can be done
long after the type was defined. This stands for retro-
active modeling.

We have to answer on a number of questions in
order to understand generic approach of Scala. First
one is how does a concept defined. The answer comes
by means of generic trait. Here is example concept for
graph edge.

No. 4 2015



ASSOCIATED TYPES AND CONSTRAINT PROPAGATION 229

implicit object adjListModel extends IncidenceGraph[AdjacencyList] {

type Vertex = Int
type Edge = BasicEdge
val edgeMod = basicEdgeMod

type OutEdgelterator = Iterator[Edge]
def out edges(g: AdjacencylList, v: Vertex): OutEdgelterator = 22?

Fig. 3.

def first neighbor[G, V] (g: G, v: V)

(implicit igMod: IncidenceGraph[G] {type Vertex = V}): igMod.Vertex =
igMod.edgeMod.target (igMod.out edges (g, V) .next)

Fig. 4.

trait GraphEdge[E] {
type Vertex
def source(e: E): Vertex
def target(e: E):
}

We may see this as a predicate: type E satisfies pred-
icate “to be an edge type” if vertex type for it is defined
and methods accessing source and target are supplied.

Vertex

Once having specific type and a concept for it we
can create a model. Suitable way for this is through
Scala objects.

type BasicEdge = (Int, Int)

trait IncidenceGraph[G]
type Vertex
type Edge
val edgeMod: GraphEdge [Edge]
type OutEdgelterator <:
def out edges(g: G, v:

{ graph =

The concept requires model for graph edge type
Edge: any sibling of the trait will have to define value
for edgeMod member. The graph identifier is an alias
for IncidenceGraph.this used in Section 3 for
the same purpose; thus the graph = clause introduc-
ing the alias serves just for shortening our code.

We implement IncidenceGraph concept
model for AdjacencyList type as in Fig. 3.

We do not provide an implementation for
out edges method as it depends on implementa-
tion of AdjacencyList interface. The implicit
keyword before an object definition allows for usage an
object as an implicit method argument for any method

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41

{type Vertex =
Iterator[Edge]
Vertex) :

object basicEdgeMod extends
GraphEdge [BasicEdge] {
type Vertex = Int
def source(e: BasicEdge) = e. 1
def target(e: BasicEdge) = e. 2
}
The basicEdgeMod object proves that

BasicEdge type satisfies GraphEdge concept.
Scala object can be thought of as an implementation of
Singleton design pattern at the language level: it
describes a type and a single object of the type at once.
Objects facility is quite suitable for defining concept
models. This observation first made in [4].

The whole graph concepts is defined as follows.

graph.Vertex}

OutEdgelterator

accepting such arguments. The first neighbor
methods delivers such an example, see Fig. 4.

Note that we do not require graph and vertex types
implementing any specific interfaces no more. Instead
we seek for extra argument showing type G has Inci-
denceGraph concept model. A call to this method
may look as follows.

first neighbor (randomAdjacencyL-
ist, 1)

Here randomAdjacencyList returns random
graph. Compiler should find adjListModel model
and substitutes it for i gMod if it is placed in suitable
scope (exact rules for such scope could be found in ref-
erences, e.g. chap. 21 in [10].

No. 4 2015



230

Note that library method call remains the same as
in approach from Section 3. At the same time function
declaration header become more complicated. And
function implementation become more tricky. So the
main overhead on added genericity is on the library
side, not the client side, which seems acceptable. Let
us briefly compare this to Section 3 approach. Client
have to define models for her own types but may use
library models for library types. In the latter case client
will not notice any differences as compared with Sec-
tion 3 approach.

Can we lower the costs for defining client’s own
models? There are special-purpose tools for this in
languages handling generic programming from the
very beginning. E.g. in Haskell, type class instances
(concept model full analog) can be derived automati-
cally for some basic type classes. There is ongoing dis-
cussion in C++-community on the actual shape of
concept facility in the language. In particular, it is
debated how much automation for “concept maps”
(which are concept models in our terms) creation is
acceptable.

Consider example when automatic model deriving is
helpful. Imagine we have graph type just like in Section 3
with all necessary nested type declarations and
out edges method. How can it be used in
first neighbor method from current section?
We need a model where out edges method is as fol-
lows.

def out edges(g: Adjacencylist, v:
Vertex) : OutEdgelIterator =
g.out edges (v)

Indeed, definition like this could be easily gener-
ated by compiler. Must we add this feature to com-
piler? Such a question is considered by B. Stroustrup
in [11] (Technical Issues section) where possible con-
cept inclusion in the C++ language standard is dis-
cussed (post-C++11 standard). Stroustrup thinks that
this feature should be added. Though there is not such
a feature in Scala at the moment.

5. CONCLUSIONS

In this paper we choose elements of Scala program-
ming language for describing requirements on generic
interfaces of Boost Graph Library. We undertake two
approaches for implementation of the requirements:
first one translates ideas from [2] to Scala and is mostly
based on subtyping, second one goes closer to [4] and
makes explicit such generic programming entities as
concepts and their models.

Use of Scala traits may have a number of issues
inherent to subtyping. Example from the end of Sec-
tion 4 is just single trivial case of these issues. At the
same time Scala presents structural types which allow
for listing type members and eliminating the need in
explicit extension of particular trait. We think that
structural types may become more flexible basis for

PROGRAMMING AND COMPUTER SOFTWARE Vol. 41

PELENITSYN

generic programming on Scala. Though this observa-
tion requires additional research.

The author would like to thank participants of
study group on foundations of programming languages
headed by assoc. prof. Stanislav Mihalkovich for
detailed discussion of papers on the topic, as well as
members of the study group, Julia Belyakova and Vit-
aly Bragilevsky for consulting and valuable advices on
solution for problems touched upon in the paper.

REFERENCES

1. Musser, D.A. and Stepanov, A.A., Generic Program-
ming, Proceeding of International Symposium on Sym-
bolic and Algebraic Computation, vol. 358: Lecture
Notes in Computer Science, Rome, Italy, 1988,
pp. 13-25.

2. Jarvi, J., Willcock, J., and Lumsdaine, A., Associated
types and constraint propagation for mainstream
object-oriented generics, OOPSLA'05 Proc. of the 20th
Annual ACM SIGPLAN Conf. on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, NY,
USA: ACM New York, 2005, pp. 1—19.

3. Wehr, S., Lammel, R., and Thiemann, P., JavaGI:
Generalized Interfaces for Java, Proc. of the European
Conf. on Object-Oriented Programming, Ernst, E., Ed.,
LNCS, vol. 4609, Berlin, Germany: Springer-Verlag,
2007, pp. 347-372.

4. Oliveira, B.C.d.S., Moors, A., and Odersky, M., Type
classes as objects and implicits, OOPSLA'10 Proc. of the
ACM Int. Conf. on Object Oriented Programming Systems
Languages and Applications, NY, USA: ACM New
York, 2010, pp. 341—-360.

5. Pelenitsyn, A., Generic and metaprogramming in soft-
ware implementation of decoder for algebraic geometry
codes, Prikl. Inform., 2012, no. 2 (38), pp. 60—70.

6. Garcia, R., Jarvi, J., Lumsdaine, A., Siek, J., and
Willcock, J., An extended comparative study of lan-
guage support for generic programming, J. Funct. Pro-
gram., 2007, vol. 17, no. 2, pp. 145—205.

7. Gregor, D., Jarvi, J., Siek, J., Stroustrup, B., Dos
Reis, G., and Lumsdaine, A., Concepts: Linguistic
Support for Generic Programming in C++, ACM SIG-
PLAN Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’06), Portland,
Oregon, 2006, pp. 291-310.

8. Sutton, A. and Stroustrup, B., Design of Concept
Libraries for C++, Proc. SLE 2011 (International Con-
ference on Software Language Engineering), 2011,
pp. 97—118.

9. Cardelli, L. and Wegner, P., On Understanding Types,
Data Abstraction, and Polymorphism, NY, USA, N.Y.:
ACM Computing Surveys, 1985, vol. 17, no. 4,
pp. 471-523.

10. Horstmann, C.S., Scala for the Impatient, Addison-
Wesley, 2012.

11. Stroustrup, B., The C++0x “Remove Concepts” Deci-
sion, Dr. Dobb’s J., 2009; URL: http://www.drdobbs.
com/cpp/the-cOx-remove-concepts-decision/
218600111.

No. 4 2015



