Functional Parser of Markdown Language Based
on Monad Combining and Monoidal Source
Stream Representation

Georgiy Lukyanov®™) and Artem Pelenitsin

Southern Federal University, Rostov-on-Don, Russia
georgiylukyanov@gmail.com

Abstract. The main goal of this work is to develop flexible and expres-
sive methods of parsers construction based on modern techniques of
structuring of effectful computations. We compare two approaches to
describing effectful computations: monad transformers and extensible
effects in respect to construction of parser combinator libraries. We
develop two parser combinator libraries: one based on monad trans-
formers and another on top of extensible effects, and Markdown-to-HTML
translator with BTEX blocks based on first library.
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1 Introduction

A parser is a necessary part of wide range of software systems: from web browsers
to compilers. Parsers may be automatically generated or hand-written. Like any
software, parsers can carry implementation errors. One of possible methods of
development of robust and correct-by-design software is using a programming
language with a rich type system. Modern functional programming languages
such as Haskell offer facilities of lightweight program verification using strict
static typing discipline.

Functional programming is a programming paradigm which treats program
as a computation of some mathematical function. A functional style of parser
construction requires to represent parser as a function from input stream to some
abstract syntactic tree. It is convenient to allow parsers to consume input stream
partially. It is also necessary to have a method of incorrect or ambiguous input
control. There are several methods for that, for instance user may be notified
about parse error, or failure may be replaced by a list of successes [11]. With all
mentioned requirements, a Haskell type for parser may look like following.

type Parser a = String -> [(a,String)]
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Types like Parser a may be treated as computations with a side effect. To
extend expressiveness and convenience of parser construction set of side effects
may be adjusted. Modern functional programming offer a several approaches
to side effect control. The object of research in this work is construction of
parsers using statically type functional programming languages. And a partic-
ular subject is methods of side effects control and their applications to parser
construction.

The main goal of this work is to develop flexible and expressive method of
parser construction based on modern approaches to computations effects com-
bining. To achieve this goal, following tasks are in need to be solved:

1. Develop a parser combinator library based on monad transformers

2. Develop a parser combinator library based on extensible effects

3. Develop a parser of subset of Markdown enriched with IXTEX-blocks and HTML
code generator.

As a starting point for development of parser combinator libraries, results of
paper [8] are used. To describe computations with multiple side effects a concepts
of monad transformers [10] and, as an alternative, extensible effects [9] was used.
To increase flexibility of libraries and build input stream polymorphic parsers,
a special kind of monoid presented in [7] is used.

2 Overview of Approaches to Combining Computational
Effects

Modern typed functional languages such as Haskell, PureScript, Idris, etc. divide
computations in pure and impure, enforcing statical guarantees on what com-
putation is permitted to do and what it’s not: perform IO operations, main-
tain mutable state, access configuration, throw exception, etc. In the wild, most
computations have to carry several side-effects, thus an efficient and expres-
sive technique of combining of effects has to be developed. This work considers
to approaches: monad transformers and extensible effects and tries to compare
them in terms of convenience for a programmer.

2.1 Monad Transformers

Paper [10] describes a concept of monad transformer — a building block for
types describing computations with multiple side effects. Every transformer is
a building block, describing one effect: mutable state, configuration, exceptions,
etc. Transformers are put on top of a base monad to form a monad stack. Con-
sider an example of a function in monad combining effects of mutable state and
configuration:

adder :: StateT String (Reader Int) Int
adder = do
str <- get
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num <- ask
return $ num + read str

adder’ :: (MonadState String m, MonadReader Int m) => m Int
adder’ = ...

Here adder and adder’ describe same computation, but first functions is
bounded to specific monad stack and second just restricts effects that stack
ought to provide.

One characteristic of monad stack is that order of monads is statically
encoded in type, so there is no runtime control of effect interaction. Second
problem of monad transformers is need to write a lot of boilerplate typeclass
instances, that is, to add new effect, every possible combinations of newly added
effect with existing ones must be covered with instances to provide automatic
lifting, thus O(n?) instances must be written, where n is a number of monad
transformers provided by library.

class Monad m => MonadNew a m where
actionl :: m a
action2 :: m

instance MonadNew m => MonadNew (ExceptT e m) where
actionl = 1ift actionl
action2 = lift action2

instance MonadNew m => MonadNew (IdentityT m) where
actionl = 1lift actionl
action2 = lift action2

Monad transformers also doesn’t provide a way to express computations that
produce several homogeneous effects, e.g. two State effects without losing auto-
mated lifting.

One of alternative approaches that solves some problems of effect combining
is Extensible Effects.

2.2 Extensible Effects

Paper [9] present extensible effects — an alternative to monad transformers
approach to typing computations with several interacting side effects.

A main idea of extensible effects is in analogy between effectful computations
and client-server communication. An expression that is about to introduce some
side effect: perform IO, throw an exception or something else like that, must first
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make a request to some global authority which is in charge of system resources
to handle this side effect. Request describes an effectful action that need to be
done and a continuation that must be executed after action is performed.

In early variants of libraries similar to extensible effects, authority that man-
ages requests was a separate concept, like an operating system kernel, or I0-
actions handler of GHC runtime. This manager possessed all the system resources
(files, memory, etc.): it has been considering every request and making a deci-
sion if it should be fulfilled or rejected. This external effect interpreter had great
power, but lacked flexibility.

More flexibility and modularity may be introduced with concept of algebraic
effects and effects handlers [6], that inspired extensible effects. Thus, some major
points of extensible effects:

— Effects handlers are parts of users program: somehow analogous to exception
handlers. Every handler is authorized to manage effects of some part of pro-
gram and produce effects by itself, which are going to be taken care of by
some other handler.

— Effect typing system that tracks a type-level collection of effects active for
every computation. For collection here stands a notion of Open Union — a
type-indexed coproduct of functors. Action of every handler affects the type:
handled effect is excluded from collection. Therefore, it could be statically
checked that all effects are handled.

— Extensible effects exploits a notion of free monad to build an effectful DSLs.
An instance of Monad typeclass provides programmer with set of familiar
Haskell techniques such as do-notation and applicative programming.

One of huge advantages of extensible effects comparing to monad transform-
ers is absence of need in boilerplate typeclass instance declaration to perform
lifting between layers. And there is more: extensible effects permit computa-
tions with several similar effects without losing possibility of automatic lifting.
Consider an example of function with to readable environmental constants:

adder :: ( Member (Reader Int) r
, Member (Reader String) r) => Eff r Int
adder = do
num <- ask
str <- ask
return $ num + read str

Besides, extensible effects doesn’t enforce order of effects combination stati-
cally as monad transformers stack does, thus giving a precise control of effects
interactions in runtime. Next listing contains a computations and two handlers:
first one doesn’t preserve state in case of failure and returns Nothing, but second
one does and returns (0,Nothing).
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countdown :: ( Member Fail r
, Member (State Int) r) => Eff r ()
countdown = do
state <- get
if state == (0 :: Int) then die
else put (state - 1) >> countdown

run $ runFail $ runState (n :: Int) $ countdown

runCountdownl n

runCountdown2 n = run $ runState (n :: Int) $ runFail $ countdown

2.3 Resume

Both approaches have their pros and cons. Conceptually, extensible effects are
more progressive and flexible methods of effect control. But monad transformers
are undoubtedly more mature and reality checked approach.

3 Methods of Parser Construction

Consider a simple type to represent a parser.
type Parser a = String -> [(a,String)]

In this representation, parser is a function, taking input stream and returning
a list of possible valid variants of analysis in conjunction with corresponding
input stream remains. Empty list of result stands for completely unsuccessful
attempt of parsing, whereas multiple results mean ambiguity.

Types similar to Parser a may be treated as effectful computation. In this
particular example, effect of non-determinism is exploited to express ambiguity
of parsing. To represent computations with effects a concept of Monad is used
in Haskell programming language. Comprehensive information about properties
of parsers like one presented above may be found in paper [8].

To extend capabilities and improve convenience of syntactic analysers, set of
effects of parser could be expanded: it is handy to run parsers in a configurable
environment or introduce logging. In this section two approaches to combination
of computational effects will be considered: monad transformers and extensible
effects.

3.1 Parser as a Monad Transformer Stack

Monad transformer is a concept which lets to enrich a given monad with a prop-
erty of other monad. Multiple monad transformers may be combined together to
form monad stack, that is, a monad possessing all properties of it’s components.

Papers [8] proposes a way of decomposition of parser type into stack of two
monads: state and list, where the last one provides effect of non-determinism.
Thus, type for parser takes a following form.
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type Parser a = StateT String [] a

Parser combinator library developed in this work also uses two-layer monad
stack.

newtype Parser t a = Parser (
StateT (ParserState t) (Either (ErrorReport t)) a
) deriving ( Functor, Applicative, Monad
, MonadState (ParserState t)
, MonadError (ErrorReport t)

)

This representation of a parsers also is parametrised with type of input
stream. Types ParserState and ErrorReport are algebraic data types for rep-
resenting parser’s state and possible analysis errors respectively.

The most low-level primitive which serves as a basis for all parser combinators
is a parser that consumes a single item from input stream.

item :: TM.TextualMonoid t => Parser t Char
item = do
state <- get
let s = TM.splitCharacterPrefix . remainder $ state
case s of
Nothing -> throwError (EmptyRemainder "item",state)
Just (c,rest) -> do
let (c,rest) = fromJust s
put (ParserState {position = updatePos (position state) ¢
, remainder = rest})
return c

More advanced parsers from developed library: conditional consumer and
given string consumer.

sat :: TM.TextualMonoid t => (Char -> Bool) -> Parser t Char
sat p = do
state <- get
x <- item ‘overrideError‘ (EmptyRemainder "sat")
if p x then return x else
throwError (UnsatisfiedPredicate "general",state)

string :: TM.TextualMonoid t => String -> Parser t String
string s = do
state <- get
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(mapM char s) ‘overrideErrorf
(UnsatisfiedPredicate ("string" ++ s))

To actually perform parsing, it’s necessary to implement a function that
runs a computation. It’s need to be pointed out, that order of effect handling is
statically encoded in type of monad stack.

parse :: TM.TextualMonoid t =>
Parser t a -> t -> Either (ErrorReport t) (a,ParserState t)
parse (Parser p) s =
runStateT p (ParserState {remainder = s, position = initPos})
where initPos = (1,1)

Overall, a concept of monad transformers has a considerable convenience
in programming due to its maturity and popularity. However, as it was dis-
cussed in Sect. 2, this approach lacks flexibility, doesn’t allow stacks with several
homogeneous effects (for instance, multiple StateT transformers) without losing
automatic lifting (1ift) and requires boilerplate typeclass instance declaration.

Next, different method of monadic parser combinators will be considered:
one based on extensible effects — an alternative framework of construction of
effectful computation.

3.2 Parsers Based on Extensible Effects

Extensible effects, presented in paper [9], are an alternative to monad transform-
ers approach to effectful computation description.

An idea behind extensible effects, in a nutshell, is all about analogy between
client-server interaction and computational effects. Commands of code is about
to produce some side-effect such as 10, exception, etc. have to send a request
for handling this effect to a special authority — an effect manager. Request
describes an action that should be performed alongside with a continuation.

Consider basic primitive of the library — function that consumes a single
item of input stream.

item :: ( Member Fail r
, Member (State String) r) => Eff r Char
item = do
s <- get

case s of [] -> die
(x:x8) -> put xs >> return x

Type annotation of this function declares effects performed by this function:
fallible computation and presence of state. Let us take a closer look on its type
annotation. Constraint Member Fail r points out that set of effects r must
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contain effect Fail, whereas type of return value Eff r Char tells that func-
tion item yields value of type Char and may perform effects from set r.
Generally, from syntactic point of view, declaration of combinators based on
extensible effects is similar to regular monadic code. This is achieved by type Eff
r a having an instance of Monad typeclass. Eff r ais a free monad constructed
on top of functor r which is a open union of effects. As long as Eff r a is a
monad, regular monadic do-notation and applicative style become available.

sat :: ( Member Fail r
, Member (State String) r) => (Char -> Bool) -> Eff r Char
sat p = do
(s :: String) <- get
X <= item

if p x then return x else (put s >> die)

Extensible effects, in contrast to monad transformers, allow to set an order
of effect handling just before running computation. Thus, same computation
may produce different behaviour, controlled by order of application of handlers.
For instance, in next listing types of handlers parse and parse’ are different
because parse handles Fail after State and yields pair of last occurred state
and possibly missing result of parsing, i.e. saves last state with no respect to
success of parsing. Conversely, parse’ handles State first and doesn’t return
any state in case of unsuccessful parsing.

parse :: Eff (Fail :> (State s :> Void)) a -> s -> (s, Maybe a)
parse p inp = run . runState inp . runFail $ p

parse’ :: Eff (State s :> (Fail :> Void)) w -> s -> Maybe (s, w)
parse’ p inp = run . runFail . runState inp $ p

4 Design of Markdown Parser

Markdown is a lightweight language, widely used for small-scale writing. It comes
in handy when regular markup languages such as HTML and I#TEX are considered
an overkill. Markdown is popular in IT community, for instance it is extensively
used on source code repositories hosting web sites, like GitHub [1].

4.1 Markdown Syntax

In contrast with HTML or XML, Markdown doesn’t have a standard description.
However, informal but comprehensive description of syntax exists [2]. There
are also several enhanced versions, such as, for example, GitHub Flavoured
Markdown.

In this work a subset of Markdown syntax is considered, specifically head-
ers, paragraphs, unordered lists and block quotes. In addition, source code may
include I TEX-blocks with formulae.
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4.2 Parser

Haskell programming language is know for its rich type system. It provides
facilities of algebraic data types (ADTs), that could be exploited to conveniently
express structure of abstract syntax tree (AST). Every Document is a list of
blocks. Now, Block is a sum type, which means that each of its data constructors
represents some Markdown-block.

type Document = [Block]

data Block = Blank

| Header (Int,Line)

| Paragraph [Line]

| UnorderedList [Line]
| BlockQuote [Line]

deriving (Show,Eq)

data Line = Empty | NonEmpty [Inlinel
deriving (Show,Eq)

data Inline = Plain String

| Bold String

| Italic String

| Monospace String

deriving (Show,Eq)

Let’s take a closer look at types from previous listing. Block is either empty
block, or header, or paragraph, or unordered list, or block quote. Most blocks
is essentially a list of lines. Every line is a collection of inline elements that are
treated differently based on its style.

Next listing contains parsers for line and inline elements, parsers bold,
italic and plain are similar to monospace and are omitted for the sake of
briefness.

line :: TM.TextualMonoid t => Parser t Line
line = emptyLine ‘mplus‘ nonEmptyLine

emptyLine :: TM.TextualMonoid t => Parser t Line
emptyLine = many (sat wspaceOrTab) >> char ’\n’ >> return Empty

nonEmptyLine :: TM.TextualMonoid t => Parser t Line
nonEmptyLine = do
many (sat wspaceOrTab)
1 <- sepbyl (bold <[> italic <[>
plain <[> monospace) (many (char ’ ’))
many (sat wspaceOrTab) >> char ’\n’
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return . NonEmpty $ 1

monospace :: TM.TextualMonoid t => Parser t Inline
monospace = do
txt <- bracket (char ’¢’) sentence (char ’‘’)

p <- many punctuation
return . Monospace $ txt ++ p

Implementation of Markdown parsers heavily relies on base of repetition com-
binators.

many :: Parser t a -> Parser t [a]
sepby :: Parser t a -> Parser t b -> Parser t [a]

bracket :: Parser t a -> Parser t b -> Parser t ¢ -> Parser t b

—

many parses a list of tokens which satisfy its argument.

2. sepby parses a sequence of tokens which satisfy its first argument and sepa-
rated by tokens which satisfy second one.

3. bracket parses tokens which satisfies its third argument and enclosed by

tokens which satisfy first and third one respectively.

Being able to correctly parse both lines and inline elements, it’s time to get
to block parsers. Next listing contains parser for header. Parsers for the rest of
blocks may be constructed in a similar way.

header :: TM.TextualMonoid t => Parser t Block
header = do

hashes <- token (some (char ’#’))

text <- nonEmptyLine

return $ Header (length hashes,text)

Markdown language is also used for making notes during lectures and talks,
building documentation, and preparing assignments. Therefore, IXTEX blocks
seem as a helpful enhancement of a language. There almost no additional work
to be done here: it’s needed to recognize a BTEX block and leave its contents
unmodified, so could be later treated properly by code generator.

blockMath :: TM.TextualMonoid t => Parser t Block
blockMath =
(bracket (string "$3$") (some (sat (/= ’$’)))
(string "$$")) >>=
return . Paragraph . (:[]) . NonEmpty . (:[]) . Plain .
Ax => "$$" ++ x ++ "$$")
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Function doc presents top-level parser for Markdown-document as a list of
blocks.

doc :: TM.TextualMonoid t => Parser t Document
doc = many block
where block = blank <|> header <|> paragraph <|>
unorderdList <|> blockquote <|> blockMath

4.3 HTML Generation

Having an AST, code in any markup language could be generated. In this work,
HTML has been chosen as a target language. One advantage of HTML is possibility
of use of JavaScript-libraries, such as MathJax [3] to render IWTEX blocks.

Code generation process follows structure of abstract syntactic tree: function
serialize generated code for list of blocs and collapses result to a single string.
Every block type is handled by separate pattern matching clause of genBlock
function. Equally for lines elements and function genLine.

Next listing displays simplified code generators: handlers for some items are
omitted for compactness.

serialize :: Document -> String
serialize = concatMap genBlock

genBlock :: Block -> String
genBlock Blank = "\n"
genBlock (Header h) =
"<h"++s++">" ++ genline (snd h) ++ "</h"++s++">"++"\n"
where s = show (fst h)

genLine :: Line -> String
genLine Empty = "
genLine (NonEmpty 1) = concatMap ((++ "") . genInline) 1

genInline :: Inline -> String
genInline (Plain s) = s
genInline (Monospace s) = "<code>" ++ s ++ "</code>"

This is, in brief, the process of Markdown parsing and HTML code genera-
tion. Full source codes of parsers and code generator may be found in GitHub
repository [4].

5 Conclusion

Following results have been achieved:
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1. Parser combinator library based on monad transformers that uses special
monoids for input stream representation has been developed.

2. Prototype of parser combinator library based on extensible effects has been
developed.

3. Basing on library from point one, parser for subset of Markdown enriched
with IXTEX blocks has been built, together with HTML code generator.

All source codes are available in repositories [4,5].

In addition, Sect.2 contains a comparative analysis of convenience of pro-
gramming with two approaches to control of computational effects: monad trans-
formers and extensible effects.

5.1 Possible Applications

Developed libraries may be used for syntax analysis of markup and programming
languages.

One possible application of Markdown with IXTEX-blocks parser is a elec-
tronic lecture notes system.

5.2 Future Research

Extensible effects is a implementation of abstractions of algebraic effects and
effects handlers. These abstractions are in its infancy and it could be useful to
perform an approbation of its implementations as a machinery for constructing
parser combinators libraries.
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