
Arkade: k-Nearest Neighbor Search With Non-Euclidean
Distances using GPU Ray Tracing

Durga Mandarapu

Purdue University

West Lafayette, IN, USA

dmandara@purdue.edu

Vani Nagarajan

Purdue University

West Lafayette, IN, USA

nagara16@purdue.edu

Artem Pelenitsyn

Purdue University

West Lafayette, IN, USA

apelenit@purdue.edu

Milind Kulkarni

Purdue University

West Lafayette, IN, USA

milind@purdue.edu

ABSTRACT
High-performance implementations of 𝑘-Nearest Neighbor Search

(𝑘NN) in low dimensions use tree-based data structures. Tree al-

gorithms are hard to parallelize on GPUs due to their irregularity.

However, newer Nvidia GPUs offer hardware support for tree opera-

tions through ray-tracing cores. Recent works have proposed using

RT cores to implement 𝑘NN search, but they all have a hardware-

imposed constraint on the distance metric used in the search—the

Euclidean distance. We propose and implement two reductions to

support𝑘NN for a broad range of distances other than the Euclidean

distance: Arkade Filter-Refine and Arkade Monotone Transforma-

tion, each of which allows non-Euclidean distance-based nearest

neighbor queries to be performed in terms of the Euclidean distance.

With our reductions, we observe that 𝑘NN search time speedups

range between 1.6x-200x and 1.3x-33.1x over various state-of-the-

art GPU shader core and RT core baselines, respectively. In evalu-

ation, we provide several insights on RT architectures’ ability to

efficiently build and traverse the tree by analyzing the 𝑘NN search

time trends.

CCS CONCEPTS
•Computingmethodologies→Ray tracing;Graphics processors;
• Information systems→ Nearest-neighbor search; • Theory
of computation→ Nearest neighbor algorithms.

KEYWORDS
GPU Ray Tracing, k-Nearest Neighbor Search, Non-Euclidean Dis-

tances

https://doi.org/10.1145/3650200.3656601

1 INTRODUCTION
𝑘-Nearest Neighbor Search (𝑘NN) is the problem of finding points

similar to a query point based on a desired distance function. Sev-

eral commonly used distance functions include Euclidean distance

(𝐿2 norm), Manhattan distance (𝐿1 norm), Chebyshev distance (𝐿∞

norm), Minkowski distance (𝐿𝑝 norm), and Cosine (or Angular)

distance. 𝑘NN is used in diverse applications, including point cloud

registration [42], facial recognition [26, 30], recommendation sys-

tems [1], and more.

Due to the computational intensity and the wide applicability

of 𝑘NN, many optimization techniques have been proposed in this

space: tree-based approaches, such as kd-tree or ball tree [14, 31,

51]; graphs, such as proximity graphs or 𝑘NN graphs [11, 28, 53];

hashing, such as locality sensitive hashing [21, 22, 41]; quantization,

such as product quantization codes [3, 17, 25].

Tree-based approaches to 𝑘NN work better and provide logarith-

mic guarantees in lower dimensions [5, 10]. Low-dimensional data

(two to three dimensions) is predominant in several applications,

such as spatial query processing [39] and astronomical data [43],

where tree-based approaches have gained popularity. However, tree-

based approaches can not be efficiently accelerated using GPUs,

unlike the non-tree indexing methods. Tree-based implementations

on GPU run 𝑘NN queries in parallel by mapping each query to a

GPU thread that traverses the tree. These traversals are highly ir-
regular: different traversals touch different parts of the tree, leading

to control divergence, and the tree itself can be scattered around

memory, leading to memory divergence [15]. Nevertheless, several

recently proposed algorithmic approaches improve GPU efficiency

for tree traversals, leading to fast nearest neighbor searches on

low-dimensional data [15, 19, 34, 51].

Modern GPUs do not just contain the shader cores used by prior

approaches, but also ray-tracing (RT) cores. RT cores are built to

accelerate ray tracing [2, 23, 37]: identifying which objects in a

scene are intersected by rays cast from a source such as the viewer’s

eye. Ray-tracing is an inherently irregular problem, and these ray

tracing cores perform hardware accelerated tree traversals: they build
a spatial tree called a bounding volume hierarchy over the objects
in a scene, then each ray traverses that tree to find the objects it

intersects. While ray tracing is a highly specific algorithm, and it

may seem that RT cores cannot be used to solve other problems,

prior work has shown that by carefully constructing the objects in a

scene and properly defining the rays, it is possible to find solutions

to non-ray tracing problems by reducing them to ray tracing [9,

33, 48, 54]. In particular, several prior papers have shown how to

reduce 𝑘NN to ray tracing [9, 33, 52, 54] (see Subsection 7.1,2.4).

Unfortunately, the existing 𝑘NN approaches on RT cores are all

based around a single reduction that inherently uses the Euclidean

distance (𝐿2 norm) as the desired distance function. This limitation

is unsurprising, as the RT cores arrange objects in a scene according

to the Euclidean distance. However, one cannot merely use 𝐿2 near-

est neighbor as a proxy for other distance functions. For example,

an object being at a particular Euclidean distance from the point of

interest says nothing about a non-𝐿2 distance function such as the

https://doi.org/10.1145/3650200.3656601

Mandarapu, et al.

Angular distance between them (Figure 1). In practical applications

like street maps and astronomical settings where Euclidean distance

falls short in conveying essential information, non-𝐿2 distances are

needed (see Section 2.1 for more detail). However, prior work on

RT cores cannot address these non-𝐿2 distance requirements.

Figure 1: Euclidean and Angular distances: 𝑎 and 𝑏 are data
points, 𝑞 is a query point, and 𝑂 is the point of reference.
𝐿2 (𝑞, 𝑎) < 𝐿2 (𝑞,𝑏) ≠⇒ 𝛽 < 𝛼

To support non-Euclidean 𝑘NN queries, we make a key obser-

vation that the prior 𝑘NN reductions to RT cores do not solve the

nearest neighbor problem directly [9, 33, 54]. Instead, the reduc-

tions accelerate an 𝑟 -bounded distance query: find all points within

a distance 𝑟 of a query point 𝑞, according to their Euclidean dis-

tance. Similarly, instead of solving 𝑘NN problem for other distance

functions on RT cores directly, in this paper, we show how to re-

duce 𝑘NN searches in other distances to the 𝑟 -bounded Euclidean

distance search and implement the reductions for RT cores.

Contributions
This paper introduces Arkade, a suite of two general reductions:

Filter-Refine (RT) and Monotone Transformation (MT), each allow-

ing non-Euclidean distance-based nearest neighbor queries to be

performed on RT cores. In particular, we contribute the following.

(1) Arkade FR reduction performs a generic distance-based 𝑘NN

search using RT cores by decoupling the 𝑘NN search into Filter
and Refine phases and adapting a tree-based 𝑘NN algorithm

for distances besides the Euclidean distance (Section 3). The re-

duction utilizes geometric properties common in some popular

distance functions, such as 𝐿𝑝 distances.

(2) Arkade MT reduction enables RT-based acceleration of 𝑘NN

search for distance functions that do not hold the geometric

properties favored by Arkade FR reduction (Section 4). The

reduction transforms the input such that the original order of

distances between the data points is preserved. Important exam-

ples of such distances are cosine distance or angular distance.

(3) Evaluation of Arkade (FR and MT) implemented as stand-alone

applications using RT cores of the NVIDIA GeForce RTX 4060

Ti GPU (Section 6). Our reductions show speedups of 1.6x-200x

and 1.3x-33.1x over various state-of-the-art GPU shader core

and RT core baselines, respectively.

Arkade (aRKaDe) derives its name from the three parameters this

paper considers — radius (𝑟), number of neighbors (𝑘), and distance

function (𝐷).

2 BACKGROUND
2.1 k-Nearest Neighbour Search
We define the 𝑘NN search problem in Definition 1 since there

are several variants of 𝑘NN. Importantly, the particular distance

function 𝐷 is a parameter.

Definition 1 (𝑘-Nearest Neighbor Search). Given a query point
𝑞 ∈ R𝑑 , a set of data points, 𝐴 ⊆ R𝑑 , a value 𝑘 ∈ N, and a distance
function 𝐷 : R𝑑 × R𝑑 → R, the generalized 𝑘-nearest neighbor
problem finds a result set of points, 𝑇 ⊆ 𝐴, that contains the closest 𝑘
points to 𝑞 according to 𝐷 .

The naive way of performing 𝑘NN is computing the distance

between 𝑞 and all of the points in 𝐴 and ordering them by 𝐷 , an

𝑂 (𝑛 log𝑘) process1 (|𝐴| = 𝑛). Tree-based approaches [14, 31, 51]

can avoid comparing 𝑞 to every point in 𝐴 by efficiently indexing

the points in 𝐴 using a tree and pruning the search space, resulting

in an𝑂 (log𝑛 log𝑘) algorithm. However, the trees built by RT cores

use 𝐿2-based pruning [9, 33, 48, 54], and hence this approach only
works if the distance function 𝐷 is the 𝐿2 distance.

Other distance functions. The key focus of this paper is using RT

cores, which are inherently tied to 𝐿2 distances, to solve non-𝐿2

distance problems. This subsection summarizes some of these non-

𝐿2 distance functions.

In 2-dimensional space, we recall the set of functions that give

the distance between point 𝑎 and 𝑏 based in 𝐿𝑝 spaces [6] as follows,

where 𝑎𝑥 , 𝑎𝑦 are 𝑥,𝑦 coordinates of point 𝑎, and |.| represents the
absolute value:

𝐿𝑝 (𝑎, 𝑏) = (|𝑎𝑥 − 𝑏𝑥 |𝑝 + |𝑎𝑦 − 𝑏𝑦 |𝑝)
1

𝑝 , 𝑝 ∈ R ≥ 1

𝐿∞ (𝑎, 𝑏) =𝑚𝑎𝑥 (|𝑎𝑥 − 𝑏𝑥 |, |𝑎𝑦 − 𝑏𝑦 |)
While 𝐿𝑝 norms use Cartesian coordinates, distances such as

angular distance, cosine distance, inner product, or dot product use

spherical coordinates [46]. Angular distance is the shorter angle

between two vectors, while cosine distance or cosine similarity is

the cosine function applied to this angle. The inner product or dot

product is the same for vectors, and these are, in turn, the same as

cosine distance when the vectors are of unit length. Because cosine

distance measures how similar two vectors are, it is highly useful

in recommendation systems.

This paper confines its scope to 2- and 3-dimensional spaces

because RT cores operate solely within these dimensions. The util-

ity of non-Euclidean distances in these lower dimensions remains

evident in several domains, such as geospatial applications and

astronomy. For instance, consider street maps, where the determi-

nation of nearest points of interest hinges on the ordering of their

Manhattan distance from the query point location since the data

points in a city usually adhere to taxicab geometry. Similarly, visu-

ally nearby stars are identified with cosine distance in 3 dimensions

instead of Euclidean distance: the three stars in Orion’s belt are not

𝐿2-close together—they are approximately 2000, 1200, and 700 light

years away from Earth—despite being visually adjacent.

1
The log𝑘 term comes from efficiently maintaining distances of the top 𝑘 neighbors

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

2.2 Ray Tracing Architecture
Ray tracing is a graphics rendering algorithm where rays are mod-

eled from a starting point as a source and followed (traced) till they

hit the objects in a scene. The fundamental operation in ray tracing

is computing ray-object intersections: for a given ray, what object(s)

does the ray intersect? This problem shares some features with

nearest-neighbor search: the naïve algorithm compares a ray to

each object in a scene but can be accelerated using a spatial tree to

prune the space. In the case of ray tracing, this spatial tree is called

a bounding volume hierarchy (BVH) [45], and the RT architecture

on modern GPUs provides acceleration for building and traversing

this spatial tree.

The RT architecture employs both RT cores and shader cores

(also called streaming multiprocessors) to accelerate various stages

of the ray-tracing pipeline. Optimized drivers build a BVH bottom-

up by enclosing each object in an axis-aligned bounding box (AABB)
and grouping AABBs such that several AABBs can be enclosed

in a larger AABB. Eventually, the overall scene is enclosed in a

single AABB. RT cores recursively traverse the BVH tree to com-

pute ray-object intersections. In particular, if a ray intersects an

AABB, then the enclosed bounding boxes will be tested next. The

process continues until it reaches leaf AABBs. At that point, the

shader cores execute user-defined code to determine whether the

ray intersects the object contained in the AABB. If an intersection

is found, another user-specified code is called.

2.3 Programming and Execution Model
Optix [35] is a programming interface that provides access to the

entire RT architecture. This interface allows the user to write tra-

ditional shader programs that are executed on the shader cores

and leverage the RT hardware for BVH construction, traversal,

and, if applicable, intersection testing. Optix allows the user to

specify user-defined geometries, which we use to represent neigh-

borhoods in non-𝐿2 distances. Important Optix kernels that we

use are RayGen and Intersection. RayGen kernel creates rays with

user-specified parameters such as the origin, direction, and length

of the ray. It then calls for BVH traversal and intersection testing.

For user-defined geometries, the user is required to provide a cus-

tom intersection test for ray-object intersections in the form of an

Intersection kernel.

Geometric Objects. For a distance function 𝐷 , all the points that are

at a 𝐷-distance of 𝑟 could be described by a geometric object. For

example, if the distance function is 𝐿1 norm, then the geometric

object is a square rhombus in 2D space and a square bi-pyramid in

3D space. Similarly, if the distance is 𝐿2 norm, then the geometric

object is a circle in 2D space and a sphere in 3D space. A geometric

object simply refers to a geometry whose periphery contains points

that are equidistant from the center of the geometry. The geometric

objects are then placed inside AABBs. With the Optix interface,

it is up to the user to define the distance function of geometric

objects, so these geometric objects are also called user-defined or

custom-defined geometries.

Limitations. There are several limitations when re-purposing RT

architecture to perform a non-RT task. First, we are limited to using

data with three dimensions. Second, the BVH built by the RT archi-

tecture is not accessible nor programmable in any kind by a user.

There is no available information on how the BVH is constructed or

traversed. Third, during the traversal, the Optix interface notifies

the user only when a successful ray-AABB intersection occurs. We

do not know the actual number of AABBs that are tested during the

traversal or the actual traversal path. Fourth, even after successful

mapping, it is hard to assess the resource utilization of our mapping

and identify opportunities to optimize the hardware usage due to

inadequate support from the profilers.

2.4 RT-kNN: kNN on RT architecture
Accelerating a non-RT problem with RT cores requires defining

several components that we call a reduction. A reduction defines a

scene with objects and rays such that the hardware-accelerated ray-

AABB intersection detection encodes a partial or complete solution

to the initial non-RT problem. The reduction should define how to

decode that solution.

In particular, the reduction of 𝑘NN to RT only aims to accelerate

a part of the problem, which is the 𝑟 -bounded distance query. We

refer to this reduction as ‘RT-𝑘NN’ for the rest of the paper. Figure 2

shows how the RT-𝑘NN reduction (on the right) solves a flipped-

around version of the conventional 𝑘NN algorithm (on the left). It

tries to find if the query point is at a distance less than or equal

to 𝑟 to a data point rather than finding the data points that are

within a distance of less than or equal to 𝑟 to a query point. To

find the neighbors of query points, RT-𝑘NN reduction models the

data points as spheres, the query points as rays, and the neighbor

identification as an intersection of the corresponding ray with the

spheres, as explained in more detail below [52].

Figure 2: RT-𝑘NN reduction (right) finds all query points
within radius 𝑟 to data point unlike the conventional 𝑘NN
algorithm (left) that finds all data points within radius 𝑟 to
the query point. Blue circles and red rhombus represent data
and query points, respectively.

Given a set of data points 𝐴 and a set of query points 𝑄 , the

RT-𝑘NN reduction builds spheres of radius 𝑟 centered around all

data points in 𝐴, as shown in the right part of Figure 2. To find

the neighbors, the reduction launches point rays from every query

point. A point ray is a ray whose length is a very small positive

number. If a point ray cast from the point 𝑞 ∈ 𝑄 as the source

intersects with the sphere of radius 𝑟 and center 𝑎 ∈ 𝐴, then it

means that the point 𝑞 is present inside the sphere and so the

Euclidean distance between points 𝑎 and 𝑞 is at most 𝑟 .

3 FILTER-REFINE
In this section, we show how to map 𝑘-nearest neighbor search for

distance functions beside 𝐿2 norm to a ray tracing problem. For

Mandarapu, et al.

this purpose, we use a general framework called Filter-Refine. In

particular, we formulate Arkade Filter-Refine reduction (Subsec. 3.1)

and prove its correctness (Subsec. 3.2).

Filter-Refine is a two-step selection framework for search prob-

lems [50]. First, we filter a subset of the possible candidates from
the data points and then refine this subset to produce a result that

answers the original search query, exactly or approximately. Draw-

ing on the principles of this framework, we devise a reduction that

breaks down 𝑘NN search for a generic distance function into Filter

and Refine phases and maps these phases to operations performed

by the RT architecture.

3.1 Arkade Filter-Refine Reduction
Assume an arbitrary distance function 𝐷 . To find the nearest 𝑘

points within the 𝐷-distance of 𝑟 to a query point 𝑞, the Arkade

Filter-Refine (FR) reduction employs the following Filter and Refine
phases.

(1) Filter Phase finds all the candidate data points that are within
the 𝐷-distance of 𝑟 , by mapping the data points and query

points to a ray tracing scene.

(2) Refine Phase, once the candidates are filtered, sorts them ac-

cording to their 𝐷-distance to the query point 𝑞 and finds the

𝑘 nearest neighbors.

The first step of the reduction involves solving the 𝑟 -bound

query problem, which is where the RT architecture comes in. The

hardware accelerates the search process of candidates since we

encode them as a part of the ray tracing problem. In particular, to

find all the data points within a 𝐷 distance of 𝑟 from the query

points, the reduction builds specific distance function geometric

objects centered at data points and launch point rays originating

from query points. The ray traverses the BVH to find the candidates

that will be passed to the Refine phase.

In Figure 3, part (a) on the left shows data points and query

points colored in blue and red, respectively. When an RT core finds

an intersection, the intersection is with the AABB that contains

the geometric object, rather than the geometric object itself. To

ensure that there are no false positive candidates, the ray-AABB

intersections are further filtered to remove the data points where

the query point lies inside the AABB but outside the geometric

object. Part (b) of Figure 3 shows how the Filter phase first uses RT

cores to get the AABBs that a point ray intersects and then uses the

shader cores to perform the intersection with the geometric object

present inside these intersected AABBs. AABBs and geometric

objects are represented by squares and circles, respectively. The

green AABBs or circles are the ones selected, while the blue ones

are not.

The second step of the reduction, the Refine phase, processes

the candidates that are passed on from the Filter step. In particular,

the candidates are ordered to select the nearest 𝑘 data points to

the query point. Part (c) in Figure 3 shows that the blue and green

points are the candidates processed in the refine phase, out of which

only the green points are selected as the top-𝑘 neighbors.

Figure 3: Filter-Refine: (a) map points to RT scene, (b) RT
cores filter AABBs and shader cores filter geometric objects,
(c) refine candidates to select 𝑘 = 1 nearest neighbors.

WepresentArkade Filter-Refine reduction in algorithm 1. In Line 1,

AABBs corresponding to each data point are defined. If𝐷 is 𝐿1 norm,

then the geometric object is a square rhombus and the AABB with

a side of length 2𝑟 should be defined to tightly fit the rhombus. It

is up to the user to decide how big of a bounding box is needed to

render the desired geometry. However, the tighter, the better. In

line 2, an Optix API call is made to build the BVH on the defined

AABBs. The constructed BVH is not returned to the user but is

available for the RT architecture to traverse. In line 3, an Optix API

call is made to launch point rays from each query point. From line 4,

the neighbor search starts. In lines 4-5, RT cores perform the BVH

tree traversal of the ray and return the AABB intersection when

a ray is found to intersect with AABB. Lines 5-9 and lines 10-12

indicate the Filter and Refine phases respectively. Lines 6-7 extract

the data point, which is the center of geometry inside the hit AABB,

and the query point, which is the source of the point ray hitting

the AABB. In line 8, we compute the 𝐷-distance between them.

In line 9, we filter out all the data points that are farther than a

𝐷-distance of 𝑟 . Lines 10-12 refine the selected candidates and store

the top 𝑘 closest points.

Algorithm 1 Arkade Filter-Refine Reduction

Input: Training set 𝐴, Query set 𝑄 , distance function 𝐷 , 𝑟, 𝑘

Output: ∀𝑞 ∈ 𝑄, top 𝑘 neighbors of q within 𝐷 distance 𝑟

1: ∀𝑎 ∈ 𝐴, define AABB on the geometry centered at 𝑎

2: construct BVH on all the AABBs

3: ∀𝑞 ∈ 𝑄, launch point ray at 𝑞

4: while each ray is traversing BVH do
5: if RT cores return ray-AABB intersection then
6: 𝑎 ← 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦.𝑐𝑒𝑛𝑡𝑒𝑟 ⊲ data point

7: 𝑞 ← 𝑟𝑎𝑦.𝑜𝑟𝑖𝑔𝑖𝑛 ⊲ query point

8: 𝑤 ← 𝐷 (𝑎, 𝑞)
9: if 𝑤 ≤ 𝑟 then
10: if 𝑤 < 𝑚𝑎𝑥 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑞).𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)
11: or |𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 | < 𝑘 then
12: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑎,𝑤)

In the Algorithm 1, the Filter and Refine phases are interleaved.

Instead of storing all the candidates from the Filter phase, each

candidate is refined on the go. Once the RT core finds a point

that is within 𝑟 distance, the reduction uses the shader cores to

dynamically update the list of 𝑘 nearest neighbors, and return the

control to RT cores to resume the search for candidates.

The Arkade FR reduction presented above is a generalization of

the RT-𝑘NN reduction and uses RT cores in a novel way. RT-𝑘NN

ships spheres to RT cores because an 𝑟, 𝐿2-ball (Def 2) is exactly

a sphere. Similarly, for a distance 𝐷 , we need to build geometric

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

objects customized to the distance function to represent an 𝑟, 𝐷-

ball. Our key observation with Arkade Filter-Refine is that the RT

architecture can process custom geometric objects.

Although Arkade FR reduction depends on a more advanced

feature of RT cores, it finds a way to stay agnostic to the inherent

property of RT cores, which only understand 𝐿2 distances. The

distance fixed by the hardware does not impact the core idea of the

reduction—using point rays to find the 𝑘NN candidates. A point ray

intersects with an object containing it as long as the query point is

present inside the geometric object centered at a data point, and

this does not depend on the hardware-defined metric.

Arkade FR reduction is generic over the distance function 𝐷 .

Hence, the effectiveness of this reduction depends on the distance

function and consequently, the geometric objects that will be built

centered at the data points. If a distance function geometric object is

such that the Filter phase forwards most of the data points as 𝑘NN

candidates, Arkade FR reduction is not useful. Because it has to

process the unnecessarily large number of candidates in the Refine

phase and this might not be better than a linear scan. An example

of such a distance function is cosine distance. We address how to

perform cosine distance-based 𝑘NN search in Section 4.

3.2 Correctness of Arkade FR Reduction
To prove the correctness of Arkade FR reduction, we first introduce

𝑟, 𝐷-ball in Definition 2 and then formally define Filter and Refine

phases in Definitions 3 and 4 respectively.

Definition 2 (𝑟, 𝐷-ball centered at a point 𝑏, 𝐵𝐷 (𝑏, 𝑟)). 𝑟, 𝐷-ball
in R𝑑 centered at a point 𝑏 is a set of points 𝑎 that are within a
𝐷-distance of 𝑟 from 𝑏:

𝐵𝐷 (𝑏, 𝑟) = {𝑎 | 𝑎 ∈ R𝑑 , 𝐷 (𝑏, 𝑎) ≤ 𝑟 } (1)

Definition 3 (Filter). Given a training set of data points 𝐴, a set of
query points 𝑄 , and a positive real number 𝑟 , the Filter phase outputs
all the data points in 𝐴 that are within a 𝐷-distance 𝑟 of each query
point 𝑞 ∈ 𝑄 (i.e. 𝐴 ∩ 𝐵𝐷 (𝑞, 𝑟)).

Definition 4 (Refine). Given a natural number 𝑘 and a set of points
in 𝐵𝐷 (𝑞, 𝑟) for each query point 𝑞 ∈ 𝑄 , the Refine phase outputs the
𝑘 closest points to 𝑞 according to the 𝐷 distance.

Theorem 1 (Correctness of Arkade FR reduction). Given
a training set of data points 𝐴, a set of query points 𝑄,𝑞 ∈ 𝑄 , a
natural number 𝑘 , a positive real number 𝑟 , and a distance function
𝐷 , Algorithm 1 computes the 𝑘 nearest data points of 𝑞 within a
𝐷-distance of 𝑟 from 𝑞.

Proof. We first show that any point removed by the Filter
phase of Algorithm 1 is not inside 𝐵𝐷 (𝑞, 𝑟). Then, we show that

any point not within the 𝑘 closest points to 𝑞 gets removed by the

Refine phase. We use these two claims to conclude that the set of

points returned by Algorithm 1 is exactly the 𝑘 nearest neighbors

to 𝑞 within 𝐵𝐷 (𝑞, 𝑟).
We first claim that the Filter phase does not remove any points

inside 𝐵𝐷 (𝑞, 𝑟). Let 𝑎 be a point in 𝐴 and𝐺𝑎 be the AABB centered

at 𝑎. Notice that by construction, the 𝑟, 𝐷-ball centered at point

𝑎, 𝐵𝐷 (𝑎, 𝑟) is contained in the AABB 𝐺𝑎 (i.e., 𝐵𝐷 (𝑎, 𝑟) ⊆ 𝐺𝑎). The

point 𝑎 is removed by the Filter phase exactly when the point ray

originating from 𝑞 does not intersect 𝐺𝑎 , which by the discussion

in Section 2.4 means 𝑞 is not a point on or inside 𝐺𝑎 , so 𝑞 is not an

element of 𝐵𝐷 (𝑎, 𝑟) which implies that the 𝐷 distance between 𝑞

and 𝑎 is greater than 𝑟 .

𝑞 ∉ 𝐺𝑎 =⇒ 𝑞 ∉ 𝐵𝐷 (𝑎, 𝑟) =⇒ 𝐷 (𝑎, 𝑞) > 𝑟

However, this also implies that 𝐵𝐷 (𝑞, 𝑟) does not contain 𝑎 (i.e.,

𝑎 ∉ 𝐵𝐷 (𝑞, 𝑟)) and hence 𝑎 should be removed.

Now, we claim that any point not within the 𝑘 nearest neighbors

of 𝑞 gets correctly removed by the Refine phase. Let 𝑎 ∈ 𝐴 be a

point not removed by the Filter phase (so 𝐷 (𝑎, 𝑞) ≤ 𝑟) but such

that 𝑎 is not one of the 𝑘 nearest neighbors to 𝑞. This means that

there must be 𝑘 other points 𝑎1, 𝑎2, . . . , 𝑎𝑘 such that the farthest of

𝑘 neighbors is closer to 𝑞 than 𝑎 is (i.e., 𝑎𝑖 ≠ 𝑎 and max𝑖 𝐷 (𝑎𝑖 , 𝑞) ≤
𝐷 (𝑎, 𝑞)). Then 𝑎 gets removed on line 12 of Algorithm 1.

Since Algorithm 1 does not remove any points that should be

kept, and does not keep any points that should be removed, its

output is exactly the 𝑘 points in 𝐵𝐷 (𝑞, 𝑟) that are closest to 𝑞. □

4 MONOTONE TRANSFORMATION
This section introduces a new reduction, Arkade Monotone Trans-

formation (MT), that handles some metrics outside 𝐿𝑝 better than

the Arkade FR reduction. The 𝐿𝑝 distance functions, the primary

focus of Section 3, share an important property: their 𝑟, 𝐷-balls cor-

respond to geometric shapes that can be efficiently represented and

processed by RT cores. But this property fails for some important

distances, e.g. the cosine distance. To accommodate some of such

distances (including cosine), the Arkade MT reduction uses mono-

tone transformations to reduce 𝑘NN in the given metric to 𝑘NN in

𝐿2. The resulting 𝑘NN problem is solved with the well-established

𝐿2-distance based RT-accelerated search using spheres [9], which

is implemented as the 𝐿2-instance of Arkade FT.

Arkade MT reduction is based on the following property.

Definition 5 (Monotonicity of distance functions). A distance
function 𝐷 on R𝑛 is monotonically increasing (resp. decreasing) at
a point 𝑞 ∈ R𝑛 if there exists a transformation 𝑓 : R𝑛 → R𝑛 such
that for any two points 𝑎1 and 𝑎2 in R𝑛 , if 𝑞 is closer to 𝑎1 than 𝑎2 in
terms of the distance 𝐷 , then after applying the transformation, 𝑓 (𝑞)
is still closer to (resp. further from) 𝑓 (𝑎1) than 𝑓 (𝑎2) in terms of 𝐿2

distance:

𝐷 (𝑞, 𝑎1) < 𝐷 (𝑞, 𝑎2) =⇒
𝐿2 (𝑓 (𝑞), 𝑓 (𝑎1)) < 𝐿2 (𝑓 (𝑞), 𝑓 (𝑎2))

(resp. 𝐿2 (𝑓 (𝑞), 𝑓 (𝑎1)) > 𝐿2 (𝑓 (𝑞), 𝑓 (𝑎2))).
A distance function 𝐷 is monotonically increasing (decreasing) if

it is monotonically increasing (resp. decreasing) at every point 𝑞 ∈ R𝑛 .

The Arkade MT reduction transforms the input points such that

the ordering of the points according to the given distance function

is preserved when the transformed points are ordered according

to the 𝐿2 distance. The preservation of the ordering can be either

positive or negative i.e., the ordering of the transformed points is

either the same or the reverse as that of the original points. Now,
we formally define the Arkade MT reduction in Definition 6.

Mandarapu, et al.

Figure 4: Arkade Monotone Transformation reduction: nor-
malizing points for the cosine distance. Data and query points
are marked with, blue and red colors, respectively. 𝐿2-based
Arkade FR reduction can only be applied after the Mono-
tonic Transformation (normalization) to get the correct co-
sine distance-based 𝑘NN.

Definition 6 (Arkade Monotone Transformation Reduction).
Given a training set of data points𝐴, a set of query points𝑄,𝑞 ∈ 𝑄 , a
natural number 𝑘 , a monotonic distance metric 𝐷 and the correspond-
ing transformation 𝑓 , Arkade Monotone Transformation reduction
applies 𝑓 to points in 𝐴 and 𝑄 and performs the Arkade Filter-Refine
reduction with 𝐿2 distance to find 𝑘 nearest neighbors of every query
point from the set of data points.

Cosine Distance. As shown in Figure 1, the cosine distance

between arbitrary vectors does not correlate with the Euclidean

distance between vectors’ endpoints. To introduce a correlation be-

tween the cosine and Euclidean distances, the transformation 𝑓 we

apply is normalization. In Equation 2, the normalization multiplier

divides each of the coordinate components 𝑎𝑥 , 𝑎𝑦 , and 𝑎𝑧 of the

vector 𝑎 by the vector’s magnitude 𝜔 .

𝑓 : (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) →
(𝑎𝑥
𝜔
,
𝑎𝑦

𝜔
,
𝑎𝑧

𝜔

)
, 𝜔 =

√︃
𝑎2𝑥 + 𝑎2𝑦 + 𝑎2𝑧 (2)

When the vectors are normalized, the end points (data points)

fall on the unit circle. The cosine distance between two vectors is

the same as the cosine distance between their normalized versions.

Let 𝛼 be the angle between the query point 𝑞 and data point 𝑎.

Because 𝑞 and 𝑎 are normalized, they have a unit magnitude. The

relation between their Euclidean and cosine distances would be the

following:

𝐿2 (𝑞, 𝑎) =
√︃
| |𝑞 | |2 + ||𝑎 | |2 − 2| |𝑞 | | | |𝑎 | |𝑐𝑜𝑠 (𝛼)

=
√︁
1
2 + 12 − 2 · 12𝑐𝑜𝑠 (𝛼) =

√︁
2 − 2𝑐𝑜𝑠 (𝛼) .

According to the above relation between the Euclidean and co-

sine distances in the normalized space, as the cosine distance be-

tween the vectors 𝑞 and 𝑎 increases, the angle (𝛼) they make at

the center decreases, and so the endpoints (data points) of the vec-

tors move closer to the circle, which makes the Euclidean distance

between the endpoints smaller. Therefore, the cosine distance de-

creases as the Euclidean distance between two data points increases.

While cosine distance ordering is negatively preserved (reversed)

by Euclidean distance ordering, the Angular distance (𝛼) ordering,

is positively preserved by Euclidean distance ordering.

In Figure 4, the left and right pictures represent the original and

transformed points, respectively. The left part shows that simply

building 𝐿2 distance-based spheres and using the Arkade FR reduc-

tion with 𝐿2 distance will not give us correct neighbors according

to the cosine distance. The right part signifies that since the nor-

malization preserves the ordering, the Arkade MT reduction can

feed the normalized points to the Arkade RF reduction to get the

correct 𝑘 nearest neighbors according to the cosine distance.

5 DISCUSSION
5.1 Inclusion property to generalize RT-kNN
The closest prior work, RT-𝑘NN (Section 2.4), is limited to the 𝐿2

distance. In this subsection, we define the inclusion property of a

distance function, which allows us to generalize RT-𝑘NN to other

metrics. We also explain why this generalization cannot perform

better than Arkade and will typically perform worse.

The RT-𝑘NN reduction cannot solve the problem with an arbi-

trary metric 𝐷 without certain alterations. For example, consider

the 𝐿∞ distance and the 𝑟 -bounded 𝑘NN problem. If we supply

the RT-𝑘NN reduction with the radius 𝑟 , the candidates outside of

the circle but inside the square (an 𝐿∞ “circle”) will not be found

(subfigure 5(a)) and become false negatives. On the other hand, we

could try to supply the RT-𝑘NN reduction with a radius 𝑟 ′ larger
than 𝑟 (e.g. 𝑟 ′ =

√
2𝑟 , subfigure 5(b)). In that case, the 𝑘 closest

neighbors computed according to the 𝐿2 distance are not the same

as that of the 𝐿∞ distance. In particular, point 𝑎 is further than any

point in the space between the square and circle according to the

𝐿2 distance, but the reverse is true according to the 𝐿∞ distance.

Hence, RT-𝑘NN reduction may have to exclude point 𝑎 from the

resulting set of nearest neighbors, while the point should be in the

set according to the 𝐿∞ metric. Point 𝑎 becomes a false negative

in this case. Note, that this issue can be avoided if we increase 𝑘 to

some 𝑘′. In general, by choosing 𝑟 ′ and 𝑘′ arbitrarily larger than

the given 𝑟 and 𝑘 , we can use the RT-𝑘NN reduction to perform the

𝑘NN search based on a non-𝐿2 distance 𝐷 , although it may take

extra time to test the candidates that could have been discarded

early.

Figure 5: RT-𝑘NN reduction can be extended to perform non-
𝐿2-based 𝑘NN with a larger 𝑟 and 𝑘 using Inclusion property
(Definition 7).

We call the property of a distance 𝐷 that allows us to find a finite

𝑟 ′ the Inclusion Property (Definition 7). This property states that it

is possible to find the 𝑘NN candidates according to distance 𝐷 as

𝑘NN candidates according to 𝐿2 distance. For example, consider

the 𝐿∞ distance and 𝑟 = 1. By the inclusion property, it is possible

to construct a finite-sized sphere 𝑆 of radius 𝑟 ′ =
√
2 according to

the 𝐿2 norm such that all the points that are within a distance 𝑟

according to 𝐿∞ norm will fall inside sphere 𝑆 .

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

Definition 7 (𝐿2-inclusion property of distance 𝐷). A distance
function 𝐷 holds the 𝐿2-inclusion property if for any point 𝑏 and
positive real number 𝑟 there exists a positive real number 𝑟 ′ such that
the 𝑟, 𝐷-ball around point 𝑏 is contained in the 𝑟 ′, 𝐿2-ball around
point 𝑏.

∃𝑟 ′ : 𝐵𝐷 (𝑏, 𝑟) ⊂ 𝐵𝐿2 (𝑏, 𝑟 ′) . (3)

However, the inclusion property is only helpful when the sphere

of radius 𝑟 ′ efficiently filters the candidates. In the case of distances

where 𝑟 ′ is too large that it includes all the points in the dataset,

the search process is no better than a linear scan. Moreover, the

inclusion property only addresses how to choose 𝑟 ′ but not 𝑘′ for
given 𝑟 and 𝑘 , respectively. Currently, we choose 𝑘′ through trial-

and-error. We keep on incrementing 𝑘′ until the RT-𝑘NN can find

all the 𝑘 actual nearest neighbors.

5.1.1 RT-𝑘NN reduction vs Arkade FR reduction. The benefit and
utility of Arkade FR reduction over RT-𝑘NN reduction can be clearly

seen in the case of 𝐿𝑝 norms. With RT-𝑘NN, as 𝑝 increases, 𝑟 ′

increases from 𝑟 to
√
3𝑟 in 3D space. (The exact value of 𝑟 ′ would be

𝑚𝑎𝑥 (𝑟, 𝑟 · 𝑑1/2−1/𝑝). When 𝑝 is less than 2, the 𝑟 ′ from the inclusion

property is the same as the input 𝑟 .) The side length of AABBs that

contain the corresponding spheres also increases from 2𝑟 to 2

√
3𝑟 .

But with Arkade FR reduction, the side length of AABB remains

the same at 2𝑟 . Arkade FR reduction highlights that we do not have

to be constricted to using only spheres when we can directly place

the distance function geometric objects inside AABB. Moreover,

the RT cores index the AABBs and not the spheres.

AABBs in Arkade FR reduction are smaller than in the case of

RT-𝑘NN reduction. Tighter and smaller AABBs potentially cause

less overlap between AABBs, which in turn reduces the number of

unnecessary ray-AABB intersections, thus making the reduction

run faster. In 𝐿𝑝 norms, as 𝑝 increases, the geometry of the 𝐿𝑝

norm morphs from a sphere into a cube. Note that a cube is also an

AABB. Therefore, as 𝑝 increases, the region inside AABB that does

not contribute to the 𝐿𝑝 norm geometry decreases. The probability

that a ray-AABB intersection would be an output of filter phases

increases and reaches 1 for 𝐿∞ norm. Hence, for 𝐿∞ norm, a ray-

AABB intersection can be forwarded by the Filter phase of Arkade

FR reduction without having to perform an additional geometry

check since the geometric object and the AABB are the same. So,

Arkade FR reduction achieves optimal performance for a 𝐿∞ norm-

based 𝑘NN search.

5.2 Other Distances
Jaccard Distance. Jaccard similarity(𝐽𝑆) between two sets 𝐴, 𝐵 is

the 𝐴 ∩ 𝐵/𝐴 ∪ 𝐵 and Jaccard distance is 1 − 𝐽𝑆 [24]. The reduction

depends on the type of data and the application for which the data

is being ranked. Assume that set 𝐴 is represented by a bit vector

𝐴𝑣 where 𝑖𝑡ℎ bit indicates the presence of 𝑖𝑡ℎ in the set.

𝐽𝑆 =
|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

Preserving the order according to Jaccard distance and mapping

the distance computation is not feasible either using Arkade FR or

Arkade MT reductions. With the existing work on repurposing RT

architecture, we do not have a way to perform set operations using

RT architecture yet. We leave this as a future work.

Hamming Distance. Given two binary data strings, the Hamming

distance is the count of bit positions in which the respective bits

of the strings are different [18]. Hamming distance is equivalent to

the Manhattan distance on binary strings. Indeed, in 3D space, all

the possible binary data strings represent vertices of a unit cube,

and the Hamming distance between these strings, therefore, is the

number of edges that need to be walked from one vertex to the

other. Hence, we can use 𝐿1 norm-based Arkade FR reduction.

Mahalanobis Distance. Mahalanobis distance is the distance be-

tween a point and a given distribution, where the standard deviation

of the point is compared to the mean of the distribution. After a

particular spatial transformation, when the axes are scaled to unit

variance, Mahalanobis distance is Euclidean distance [27]. Hence,

we can use 𝐿2 norm-based Arkade FR reduction.

5.3 Choice of radius
Our reduction require radius (𝑟) as an input parameter. Selecting

a optimal radius is a challenging task because an arbitrary choice

of radius might result in poor performance or accuracy. However,

this issue is orthogonal to Arkade’s reductions. Presently, we adopt

an approach of prior work, TrueKNN [33], which we elaborate

on in the Evaluation Section 6. Exploring alternative approaches

for determining optimal radius is an intriguing avenue for future

investigation.

6 EVALUATION
In this section, we evaluate Arkade’s Filter-Refine and Monotone

Transformation reductions on four groups of realistic datasets us-

ing four baselines. We analyze various factors such as the BVH

tree quality, the average number of ray-AABB intersections, and

the number of rounds (defined in Sec. 6.2.4) that impact the perfor-

mance of Arkade on these datasets. Then, we look at the effect of

parameters such as 𝑘 .

Datasets. The characteristics of the datasets we used are sum-

marized in Table 1. As RT cores can only build BVH on three-

dimensional data, we use only 2D and 3D datasets. For 2D datasets,

we set the third dimension to zero.

Geospatial Datasets Gowalla [8] dataset contains check-in loca-

tions of users from across the world in the form of latitude

and longitude [8]. We processed the dataset to get only

distinct locations. Cali OSM [38] contains geo-spatial coor-

dinates of a very small region in California, sourced from

OpenStreetMap. Because the coordinates are local, we treat

it as 2-dimensional data. Gbif [12] contains information

on several birds and the locations where they are spotted.

We obtained the geospatial coordinates of the spottings for

January 2018. We convert the geospatial coordinates into

Cartesian coordinates before passing the data as input to

the Arkade reductions.

Point Clouds Kitti [13] is an autonomous driving footage pop-

ularly used in computer vision benchmarks. The data we

used is in the form of 3D point clouds generated by the

Velodyne scanner. We combined several frames to make

Mandarapu, et al.

up our dataset. Randnet [7] is a synthetic point cloud gen-

erated from real-world and synthetic environments using

RandLA-Net architecture [20]. This particular dataset is

built on an aerial view of a city landscape.

3D Scans Manuscript [44] dataset is an XYZ RGB 3D scan of a

page in Latin from Vellum manuscript.

Synthetic Datasets Glove 3D is a three-dimensional PCA projec-

tion of 25-dimensional Glove data [40]. Randnet is also a

synthetic dataset.

Table 1: Datasets Characteristics

Dataset Data Points Queries Dimension

Gowalla [8] 1270969 10000 3

Glove 3D [40] 1183514 10000 3

Manuscript [44] 2145617 10000 3

Cali OSM [38] 4195951 10000 2

Kitti [13] 4000000 10000 3

Randnet [20] 6815065 10000 3

Gbif [12] 8475714 10000 3

Baselines. We used three GPU and one state-of-the-art CPU 𝑘NN

libraries to evaluate Arkade. This mixture contains both tree-based

and non-tree-based approaches.

SCANN is a quantization-based approximate similarity search li-

brary [17]. It is the state-of-the-art in CPU 𝑘NN implemen-

tations [4]. We use the same parameters as ANN bench-

marks [4] to get a recall
2
of 0.99.

Treelogy implements a KD-tree-based exact GPU implementa-

tion [15]. We modify the Treelogy code to perform 𝐿𝑝 and

cosine distance-based 𝑘NN search.

FAISS is a state-of-the-art exact quantization-based GPU library [4,

25]. FAISS uses tensorflow-gpu to interface with CUDA

cores. We use the IVFFlatL2 index (as used in ANN bench-

marks [4]) and train the data before the search.

FastRNN uses RT architecture to perform fixed-radius search,

only in case of Euclidean distances [9]. To correctly perform

the 𝑘NN search using other distances, we use a larger radius√
𝑑𝑟 , where 𝑟 is the given radius and𝑑 is the data dimension,

and a larger number of nearest neighbors 𝑘′ just enough
to obtain 𝑘 nearest neighbors according to a given distance.

(see Subsection 5.1).

We use Treelogy and FastRNN to evaluate the Arkade Filter-

Refine reduction, while we use SCANN, FAISS, and Treelogy to

evaluate the Arkade Monotone Transformation reduction. SCANN

and FAISS implement only 𝐿2 and cosine distances on CPU and

GPU respectively. On the other hand, the modifications of FastRNN

only work for 𝐿𝑝 distances.

Experimental Setup. We used NVIDIA GeForce RTX 4070 Ti GPU

with 12GB memory for all of our experiments. To interface with the

RT architecture on the GPU, we used Optix Wrapper Library [47].

Arkade builds the BVH tree index once over the entire set of data

2
Recall is the ratio of the number of correctly found nearest neighbors by the search

to the number of true nearest neighbors from the ground truth.

points for chosen parameters and searches for neighbors once for all

the query points in every run.We perform 5 such runs to collect and

average the performance metrics such as build time and search time.

All the reported numbers are rounded to two non-zero decimals.

We evaluate Filter-Refine reduction with the 𝐿1 and 𝐿∞ distance

functions, and Monotone Transformation reduction with cosine

distance. We plug in TrueKNN’s [33] approach of choosing a small

radius and iteratively increasing the radius until all the query points

find their 𝑘 neighbors. To make a fair comparison, we also apply

TrueKNN to the baseline FastRNN.

6.1 Performance Evaluation
We compare the search times and the speedups of Arkade reductions

over all the baselines and the datasets in Tables 2 and 3. Table 2

shows the comparison of Arkade to the baselines, Treelogy and

FastRNN, for 𝐿1 and 𝐿∞ norms. In Table 3, we show the same

performance numbers for Cosine distance.

Among all the baselines, we see that Arkade is significantly

faster than SCANN, although the speedup can be attributed to

SCANN being a purely CPU-based implementation. In the case of

GPU baselines, Arkade is still faster by 1.5x-200x. The speedup of

Arkade over non-RT baselines demonstrates the ability of RT cores

to efficiently accelerate the irregular tree traversals. The speedups

over the RT baseline, FastRNN, show howArkade efficiently utilizes

the RT cores to accelerate a broader range of applications.

In general, we find that the speedups of Arkade over baselines

do not increase with an increase in the dataset size. For example,

Gowalla and Glove3D datasets are roughly 1M in size but Arkade’s

speedups on these datasets are very different. The search times

of non-RT-based implementations such as SCANN, Treelogy, and

FAISS increase with the increase in the size of the dataset, however,

RT implementations such as Arkade and FastRNN do not follow

the same trend. We go into more detail in Section 6.2.1.

6.1.1 𝐿1 norm. In the first half of Table 2, we see that Arkade

achieves speedups of 1.6x-160.9x and 1.3x-33.1x over Treelogy and

FastRNN, respectively. Arkade is faster than Treelogy since Arkade

uses RT cores to accelerate the BVH tree traversals, while Treelogy

uses shader cores.

In this experiment, we use the same search radius for FastRNN

andArkade. This is because the 𝐿1 norm geometric object (rhombus)

is present inside the 𝐿2 norm geometric object (circle). Even though

the search radius is the same, FastRNN searches for a larger number

of neighbors. FastRNN uses 𝐿2 distance to rank the neighbors unlike

Arkade, which uses the actual distance function, 𝐿1 norm. Because

𝐿1 norm geometric object is smaller in volume compared to 𝐿2

norm geometric object, Arkade can efficiently search neighbors in

a smaller space, which is why Arkade is consistently faster than

FastRNN.

6.1.2 𝐿∞ norm. In the second half of Table 2, we see that Arkade

achieves speedups of 4.8x-200x and 3.2x-15.6x over Treelogy and

FastRNN, respectively. We find that Arkade outperforms Treelogy

for the same reason as in the case of the 𝐿1 norm.

As noted in Section 5.1, FastRNN needs a larger search radius

(

√
3 times Arkade’s radius) and 𝑘 compared to Arkade. When the

radius increases, the size of the AABB increases, which causes an

increase in the number of ray-AABB intersection tests performed

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

Table 2: Search times and speedups of Arkade over all baselines for distance functions 𝐿1 and 𝐿∞

Dataset

𝐿1 distance 𝐿∞ distance

Search time (seconds) Arkade speedup over Search time (seconds) Arkade speedup over

Treelogy FastRNN Arkade Treelogy FastRNN Treelogy FastRNN Arkade Treelogy FastRNN

Gowalla 0.16 1.06 0.032 5.0 33.1 0.16 0.34 0.022 7.3 15.4
Glove3D 0.16 0.14 0.0063 25.4 22.2 0.14 0.011 0.0025 56.0 4.4
Manuscript 0.18 0.075 0.011 16.4 6.8 0.19 0.032 0.010 19.0 3.2
CaliOSM 0.25 0.21 0.16 1.6 1.3 0.24 0.11 0.029 8.3 3.8
Kitti4M 0.25 0.41 0.045 5.6 9.1 0.26 0.18 0.043 6.1 4.2
Randnet 0.37 0.07 0.0023 160.9 30.4 0.36 0.028 0.0018 200.0 15.6
Gbif 0.39 1.25 0.082 4.8 15.2 0.37 1.14 0.077 4.8 14.8

Table 3: Search times and speedups of Arkade over all baselines for cosine distance function

Dataset

Search time (seconds) Arkade speedup over

SCANN Treelogy FAISS Arkade SCANN Treelogy FAISS

Gowalla 79.37 0.29 0.22 0.10 793.7 2.9 2.2
Glove3D 76.52 0.32 0.21 0.0033 23,187.9 97.0 63.6
Manuscript 149.04 0.47 0.38 0.012 12,420.0 39.1 16.7
CaliOSM 284.67 1.02 0.74 0.013 21,897.7 78.5 56.9
Kitti4M 261.39 0.86 0.7 0.14 1,867.1 6.1 5.0
Randnet 471.12 1.45 1.2 0.026 18,120.0 55.8 46.2
Gbif 581.01 1.81 1.49 0.29 2,003.5 6.2 5.1

(a) Arkade (b) FastRNN

Figure 6: Run time breakdown of RT implementations for
𝐿∞ norm-based 𝑘NN search

during the BVH traversal. As these intersection tests are the most

computationally intensive part of the ray tracing pipeline, we find

that Arkade is significantly faster than FastRNN.We further analyze

the performance of Arkade and FastRNN in Section 6.2.

6.1.3 Cosine distance. In Table 3, we see that Arkade achieves

speedups of 793.7x-23, 187.9x, 2.9x-97.0x, and 2.2x-63.6x over

SCANN, FAISS, and Treelogy, respectively. Though FAISS is the

current state-of-the-art GPU-based 𝑘NN search, it is designed for

higher dimensional 𝑘NN and uses a heavy tensorflow framework.

We believe that the combination of FAISS’s overheads and Arkade’s

RT-accelerated neighbor search algorithm results in Arkade’s better

performance.

6.2 Performance Analysis
The speedup trend of Arkade can be explained by the data distribu-

tion of the dataset. This is because the way the data is distributed

affects the quality of the constructed BVH, the number of ray-AABB

tests performed for each query point, and, consequently, the num-

ber of candidates the Filter phase forwards to the Refine phase. We

unroll the effects of data distribution on each of the reductions in

the following subsections.

6.2.1 Breakdown. To understand the factors impacting the Arkade

speedups, we present a complete breakdown of Arkade and Fas-

tRNN execution times for 𝐿∞ norm in Figure 6. The execution time

is comprised of both BVH build and search times. The search time is

further divided into four parts – time taken by the Filter phase, Re-

fine phase, refit, and miscellaneous maintenance in between these

steps.

Figures 6a and 6b show the breakdown of execution times of

Arkade and FastRNN for 𝐿∞ distance, respectively. The percentage

of build time is higher in the case of Arkade than in FastRNN.

However, the actual build times in both cases are approximately

the same for respective datasets. Because Arkade’s search times are

lower than FastRNN’s, the percentage of build time of Arkade is

higher.

In Figures 6a and 6b, the Filter phase predominantly takes more

time than any other steps. In the Filter phase, the ray traverses the

BVH and checks if it intersects an AABB, and when it does intersect

an AABB, it further checks if the ray intersects the geometry. The

time the filter phase takes is affected by the quality of BVH the RT

architecture constructs. The structure of BVH further impacts the

BVH traversal and the number of intersection tests performed.

6.2.2 Impact of BVH Tree Quality. The negligible amount of time

spent in the Refine phase (Refine time is barely visible in Figure 6)

Mandarapu, et al.

(a) For 𝑘 = 1, 50, 100, Arkade’s
search and build time speedup
over Faiss

(b) Arkade’s search and build time
speedups over Faiss and Treelogy
as the dataset size changes

Figure 7: Sensitive analysis of Arkade’s search and build time
speedups for Cosine distance

supports the observation that more time is spent in traversal and

filtering AABBs rather than ordering the candidates present inside

them. The mapping of the 𝑘NN problem to RT architecture needs

the geometric objects to overlap to produce results. As the 𝑘 value

increases, the search radius needed to find all 𝑘 neighbors also in-

creases. This increases the potential of geometric objects to overlap

and reduces the effectiveness of the BVH in pruning large parts of

the neighbor search space, resulting in a BVH of poor quality. High

overlap, in turn, increases the number of ray-AABB intersections.

6.2.3 Impact of ray-AABB intersections. In Table 4, we present the

average number of ray-AABB intersections per query point that

occurred in the RT-based implementations in the case of 𝐿∞ and

Cosine distances. In the case of Cosine distance, the search times of

Arkade increase with an increase in the number of intersections and

decrease with a decrease in the number of intersections. Similarly,

in the case of 𝐿∞ distance, Arkade and FastRNN search times are

proportional to the number of intersections except for the Kitti4M

dataset. Moreover, the number of intersections is higher for any

dataset in the case of Cosine distance compared to 𝐿∞ norm, and

we observe that Cosine distance-based search takes longer than

that of 𝐿∞ norm. Due to normalization, the points become denser

in the Cosine distance scenario.

6.2.4 Impact of number of rounds. While the number of inter-

sections explains most of the trends in search times of RT-based

implementations, there are certain instances where the number of

intersections alone does not suffice. For example, FastRNN spends

more search time on Kitti4M than the Randnet dataset, but the

number of ray-AABB intersections on Kitti4M is lower than that

of Randnet. We observe that the number of rounds is higher in the

case of Kitti4M than in Randnet. We present the number of rounds

for each RT-implementation and dataset in Table 4. The number of

rounds is the number of times TrueKNN doubles the radius until it

finds 𝑘 nearest neighbors of all query points.

A higher number of rounds increases the refit time. In Figure 6,

we see that refit is the second most time-consuming part of the

search. The refit time corresponds to doubling the radius of geome-

tries, updating the AABBs to fit the new larger geometries, and

refitting the BVH for every round.

The need for a higher number of rounds arises from the data

distribution. A new round is performed when the neighbors of some

of the query points can only be found at a larger radius. Hence, the

number of rounds indicates that some neighborhoods of the dataset

are denser than others.

6.2.5 Sensitivity to 𝑘 . In Figure 7a, we study the speedup of Arkade
performance over FAISS in the case of Cosine distance as𝑘 increases.

We vary from 𝑘 as 1, 50, and 100 on Gowalla, Kitti4M, and Gbif

datasets. We also plot the build time speedup of Arkade over FAISS

for each dataset. Arkade’s search time speedups decrease as 𝑘 in-

creases. But, observe that the build times of Arkade are much lower

than FAISS. So the overall runtime (build + search time) of Arkade

is still lower than FAISS. At a sufficiently large dataset size and

𝑘 , it is possible that the benefit of using Arkade might diminish.

However, in practice, 𝑘 is typically at most 100 [4].

6.2.6 Sensitivity to Dataset size. In Figure 7b, we study the speedup
(in log scale) of Arkade performance over Treelogy and FAISS in

the case of Cosine distance as the magnitude of the dataset size

increases. We uniformly sample a randomly generated dataset to

get the number of data points from 10K to 70M. In Figure 7b, green

shaded bars show the speedup of Arkade build times over Treelogy

and Faiss, respectively, while blue shaded bars show the speedup

of Arkade search times over the same baselines. Arkade’s build and

search time speedups over Treelogy increase almost linearly with

the increasing magnitude of the dataset size. We attribute these

speedups to the optimized strategies employed for tree construc-

tion and traversal by the RT architecture. Conversely, search time

speedups over Faiss slightly decrease when the dataset size reaches

10M. We also note that Arkade runs out of memory on our 12GB

GPU after 70M points, however, both the baselines can execute up

to 100M points.

6.2.7 Impact of hardware utilization. Available Nvidia profilers [36]
can not differentiate RT cores from shader cores. Nvidia 4060Ti, the

GPU on which we ran our experiments, has 4352 and 32 shader and

RT cores, respectively. Without knowing how the architecture maps

the point ray queries to the hardware, it is difficult to determine

if Arkade is saturating the resources on RT architecture. However,

applying optimizations like balancing the workload among the

threads may improve the utilization and performance. We leave

this for future work.

7 RELATEDWORK
7.1 Non-RT Applications Accelerated With RT

Architecture
Recent work has shown that non-ray-tracing problems can be ex-

pressed as ray-object intersection problems, making them amenable

to acceleration with RT cores [9, 32, 48, 52, 54]. Wald et. al. [48] were
the first to use RT cores to accelerate non-ray tracing applications.

They looked at the problem of identifying the location of a point in

a tetrahedral mesh. By modeling the point as a ray and reporting

the closest tetrahedron intersected by the ray, they identified the

tetrahedron in which the point was contained. Zellman et. al. [52]
showed how to use RT cores to perform graph drawing. They re-

formulated the nearest neighbor search subroutine as a ray tracing

problem and used the force exerted by the nearest neighbors to

direct their graph drawing algorithm. They found their approach

to be significantly faster than the state-of-the-art force-directed

Arkade: k-Nearest Neighbor Search With Non-Euclidean Distances using GPU Ray Tracing

Table 4: Average number of ray-AABB intersection and number of rounds for 𝐿∞ distance (Table 2) and cosine distance (Table 3).

Dataset

𝐿∞ distance Cosine distance

Arkade FastRNN Arkade

Average

Rounds

Average

Rounds

Average

Rounds

#Intersections #Intersections #Intersections

Gowalla 263.47 10 510.40 10 10613.80 7

Glove3D 26.12 2 60.46 2 60.46 2

Manuscript 173.20 4 510.50 4 357.77 3

CaliOSM 440.11 6 827.03 6 2695.24 1

Kitti4M 366.38 8 365.28 7 20669.20 1

Randnet 121.92 1 397.79 1 211.86 4

Gbif 3093.40 5 5185.58 5 20708.30 1

graph drawing algorithms. Evangelou et. al. [9] used RT cores to

perform photon mapping by finding the set points in a fixed-radius

neighborhood of a query point. They used the reduction proposed

by Zellman et. al. and found that they were up to 15x faster than

non-RT-accelerated baselines. Zhu et. al. [54] proposed optimiza-

tions such as point reordering and query partitioning to improve

the performance of RT-accelerated neighbor searches. Nagarajan et.
al. proposed RT-DBSCAN [32] and TrueKNN [33] to leverage RT

cores to solve DBSCAN clustering and efficiently perform 𝑘-nearest

neighbor search, respectively.

7.2 Tree-based, GPU-accelerated kNN
Tree-based 𝑘NN algorithms are only efficient at lower dimensions

due to the curse of dimensionality [49]. They are mostly specialized

for certain applications. Merry et. al. [29] propose an optimization

to leverage the coherence of points when traversed in 𝑘d tree order

so as to reuse traversal information of neighboring points. They

find that their approach is 4.4x to 4.6x faster and does not require

any modifications to the 𝑘d tree. Treelogy[15, 19] proposes several

optimizations to improve memory coalescing and reduce diver-

gence caused by GPU threads that traverse different parts of the

tree. Gieseke et. al. [14] propose the idea of a buffer 𝑘d tree to create
batches of query points that all target the same leaf nodes of the

𝑘d tree, exploiting data locality. However, their work is specialized

for data with dimensionality between 4 and 25. An optimized ap-

proximate KD-tree-based KNN is proposed to aid in point cloud

registration [51]. However, this optimization is application-specific.

Gowanlock [16] proposes a hybrid CPU-GPU algorithm that breaks

computation up so that areas of large density are assigned to the

GPU, while the CPU handles the rest of the data. This approach

leverages the advantages offered by the different architectures to

optimize performance.

8 CONCLUSION
Irregular problems like tree traversals are ubiquitous, especially

queries like nearest neighbor search that have applications in do-

mains such as point cloud registration in computer vision, data

compression, similarity scoring, DNA sequencing, etc. Tree-based

nearest neighbor search is naturally challenging to scale up us-

ing purely software approaches on massively parallel commodity

hardware such as GPUs. Even though ray tracing cores of GPU are

specialized hardware to cater to graphics applications, we show

that this specialized hardware can be generalized to accelerate tree

operations in other domains, To that end, we provide a set of re-

ductions to the ray tracing scene. Without our reductions, distance

metric computations such as 𝐿𝑝 norm and cosine distance take sig-

nificantly longer to complete or cannot be run on RT cores (it varies

between previous works). While RT cores accelerate tree traversals

through BVH construction, this tree structure is not accessible to

the user and is limited to 3D space. Availability and programma-

bility of the spatial tree itself would be more helpful in using RT

cores for general applications.

ACKNOWLEDGMENTS
We are thankful to all the anonymous reviewers for providing

valuable feedback. We also thank Kirshanthan Sundararajah for

helping us improve the earlier versions of the paper and Raghav

Malik for helping us with the proof. This work was funded by NSF

grants CCF-1908504, CCF-1919197 and CCF-2216978.

REFERENCES
[1] David Adedayo Adeniyi, Zhaoqiang Wei, and Yang Yongquan. 2016. Automated

web usage data mining and recommendation system using K-Nearest Neighbor

(KNN) classification method. Applied Computing and Informatics 12, 1 (2016),
90–108.

[2] AMD. 2023. AMD Ray tracing. https://www.amd.com/en/technologies/rdna

[3] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2015. Cache

locality is not enough: High-Performance Nearest Neighbor Search with Product

Quantization Fast Scan. Proc. VLDB Endow. 9, 4 (2015), 288–299.
[4] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-

Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms.

Information Systems 87 (2020), 101374. https://doi.org/10.1016/j.is.2019.02.006

[5] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative

searching. Commun. ACM 18, 9 (1975), 509–517.

[6] N. Bourbaki. 1987. Topological Vector Spaces: Chapters 1-5. Springer-Verlag, Berlin.
https://books.google.com/books?id=S4wnAQAAIAAJ

[7] Meida Chen, Qingyong Hu, Zifan Yu, Hugues THOMAS, Andrew Feng, Yu Hou,

Kyle McCullough, Fengbo Ren, and Lucio Soibelman. 2022. STPLS3D: A Large-

Scale Synthetic and Real Aerial Photogrammetry 3D Point Cloud Dataset. In 33rd
British Machine Vision Conference, November 21-24, 2022. BMVA Press, London,

UK, 429. https://bmvc2022.mpi-inf.mpg.de/0429.pdf

[8] E. Cho, S. A. Myers, and J. Leskoven. 2023. Friendship and Mobility: User

Movement in Location-Based Social Networks. Retrieved from UCR-STAR

https://star.cs.ucr.edu/?stanford-gowalla&d.

[9] I. Evangelou, G. Papaioannou, K. Vardis, and A. A. Vasilakis. 2021. Fast Radius

Search Exploiting Ray Tracing Frameworks. Journal of Computer Graphics
Techniques (JCGT) 10, 1 (5 February 2021), 25–48. http://jcgt.org/published/

0010/01/02/

https://www.amd.com/en/technologies/rdna
https://doi.org/10.1016/j.is.2019.02.006
https://books.google.com/books?id=S4wnAQAAIAAJ
https://bmvc2022.mpi-inf.mpg.de/0429.pdf
https://star.cs.ucr.edu/?stanford-gowalla&d
http://jcgt.org/published/0010/01/02/
http://jcgt.org/published/0010/01/02/

Mandarapu, et al.

[10] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algo-

rithm for finding best matches in logarithmic expected time. ACM Transactions
on Mathematical Software (TOMS) 3, 3 (1977), 209–226.

[11] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate

Nearest Neighbor Search With The Navigating Spreading-out Graph. Proc. VLDB
Endow. 12, 5 (2019), 461–474.

[12] GBIF.Org User. 2023. Occurrence Download. https://doi.org/10.15468/DL.

QQ7KRQ

[13] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. 2013. Vision

meets Robotics: The KITTI Dataset. https://www.cvlibs.net/datasets/kitti/raw_

data.php

[14] Fabian Gieseke, Justin Heinermann, Cosmin E. Oancea, and Christian Igel. 2014.

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs. In

ICML (JMLR Workshop and Conference Proceedings, Vol. 32). JMLR.org, 172–180.

[15] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. General Transfor-

mations for GPU Execution of Tree Traversals. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’13). Association for Computing Machinery, New York,

NY, USA, Article 10, 12 pages. https://doi.org/10.1145/2503210.2503223

[16] Michael Gowanlock. 2021. Hybrid KNN-join: Parallel nearest neighbor searches

exploiting CPU and GPU architectural features. J. Parallel and Distrib. Comput.
149 (2021), 119–137.

[17] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern,

and Sanjiv Kumar. 2019. Accelerating Large-Scale Inference with Anisotropic

Vector Quantization. https://doi.org/10.48550/ARXIV.1908.10396

[18] R. W. Hamming. 1950. Error detecting and error correcting codes. The Bell
System Technical Journal 29, 2 (1950), 147–160. https://doi.org/10.1002/j.1538-

7305.1950.tb00463.x

[19] Nikhil Hegde, Jianqiao Liu, Kirshanthan Sundararajah, and Milind Kulkarni.

2017. Treelogy: A benchmark suite for tree traversals. In 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS). 227–238.
https://doi.org/10.1109/ISPASS.2017.7975294

[20] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang,

Niki Trigoni, and Andrew Markham. 2020. RandLA-Net: Efficient Semantic

Segmentation of Large-Scale Point Clouds. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2020).

[21] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.

Query-aware locality-sensitive hashing for approximate nearest neighbor search.

Proceedings of the VLDB Endowment 9, 1 (2015), 1–12.
[22] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards

removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[23] Intel. 2023. Intel Ray tracing. https://www.intel.com/content/www/us/en/

developer/articles/guide/real-time-ray-tracing-in-games.html

[24] Paul Jaccard. 1912. THE DISTRIBUTION OF THE FLORA IN THE ALPINE

ZONE.1. New Phytologist 11, 2 (1912), 37–50. https://doi.org/10.1111/j.1469-

8137.1912.tb05611.x

[25] J. Johnson, M. Douze, and H. Jegou. 2021. Billion-Scale Similarity Search with

GPUs. IEEE Transactions on Big Data 7, 03 (Jul 2021), 535–547. https://doi.org/

10.1109/TBDATA.2019.2921572

[26] Lukasz Kaiser and Ilya Sutskever. 2015. Neural GPUs Learn Algorithms. https:

//doi.org/10.48550/ARXIV.1511.08228

[27] Prasanta Chandra Mahalanobis. 1936. On the generalised distance in statis-

tics. http://library.isical.ac.in:8080/xmlui/bitstream/handle/10263/6765/Vol02_

1936_1_Art05-pcm.pdf

[28] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate

Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.

IEEE Trans. Pattern Anal. Mach. Intell. 42, 4 (apr 2020), 824–836. https://doi.org/

10.1109/TPAMI.2018.2889473

[29] BruceMerry, James Gain, and PatrickMarais. 2013. Accelerating kd-tree Searches

for all k-nearest Neighbours. In Eurographics 2013 - Short Papers, M.-A. Otaduy

and O. Sorkine (Eds.). The Eurographics Association. https://doi.org/10.2312/

conf/EG2013/short/037-040

[30] G. Mori, S. Belongie, and J. Malik. 2001. Shape contexts enable efficient retrieval

of similar shapes. In Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1. I–I. https:

//doi.org/10.1109/CVPR.2001.990547

[31] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms for

High Dimensional Data. IEEE Transactions on Pattern Analysis and Machine In-
telligence 36, 11 (2014), 2227–2240. https://doi.org/10.1109/TPAMI.2014.2321376

[32] Vani Nagarajan and Milind Kulkarni. 2023. RT-DBSCAN: Accelerating DBSCAN

using Ray Tracing Hardware. In IPDPS. IEEE, 963–973.
[33] Vani Nagarajan, Durga Mandarapu, and Milind Kulkarni. 2023. RT-kNNS

Unbound: Using RT Cores to Accelerate Unrestricted Neighbor Search. In

Proceedings of the 37th International Conference on Supercomputing, ICS 2023,
Orlando, FL, USA, June 21-23, 2023, Kyle A. Gallivan, Efstratios Gallopoulos,

Dimitrios S. Nikolopoulos, and Ramón Beivide (Eds.). ACM, 289–300. https:

//doi.org/10.1145/3577193.3593738

[34] Moohyeon Nam, Jinwoong Kim, and Beomseok Nam. 2016. Parallel tree traversal

for nearest neighbor query on the GPU. In 2016 45th International Conference on
Parallel Processing (ICPP). IEEE, 113–122.

[35] NVIDIA. [n. d.]. NVIDIA OptiX 7.5 – Programming Guide. https://raytracing-

docs.nvidia.com/optix7/guide/index.html

[36] Nvidia. 2023. NVIDIA Nsight Compute. https://developer.nvidia.com/nsight-

compute

[37] Nvidia. 2023. NVIDIA Ray tracing. https://developer.nvidia.com/rtx/ray-tracing

[38] OpenStreetMap. [n. d.]. https://www.openstreetmap.org

[39] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How

good are modern spatial analytics systems? Proceedings of the VLDB Endowment
11, 11 (2018), 1661–1673.

[40] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:

Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/D14-

1162

[41] Ninh Pham and Tao Liu. 2022. Falconn++: A Locality-sensitive FilteringApproach

for Approximate Nearest Neighbor Search. arXiv:2206.01382 [cs.DS]

[42] Deyuan Qiu, Stefan May, and Andreas Nüchter. 2009. GPU-accelerated nearest

neighbor search for 3D registration. In Computer Vision Systems: 7th International
Conference on Computer Vision Systems, ICVS 2009 Liège, Belgium, October 13-15,
2009. Proceedings 7. Springer, 194–203.

[43] Mark J. Reid and Karl M. Menten. 2020. The first stellar parallaxes revisited.

Astronomische Nachrichten 341, 9 (nov 2020), 860–869. https://doi.org/10.1002/

asna.202013833

[44] The Stanford 3D Scanning Repository. 2014. Vellum manuscript, The XYZ RGB

models. http://graphics.stanford.edu/data/3Dscanrep/

[45] Steven Rubin and Turner Whitted. 1980. A 3-dimensional representation for

fast rendering of complex scenes. ACM Siggraph Computer Graphics 14. https:

//doi.org/10.1145/965105.807479

[46] Amit Singhal. 2001. Modern Information Retrieval: A Brief Overview. IEEE Data
Eng. Bull. 24, 4 (2001), 35–43. http://sites.computer.org/debull/A01DEC-CD.pdf

[47] Ingo Wald, Nathan Morrical, and Haines E. [n. d.]. OWL: A Node Graph "Wrap-

per" Library for OptiX 7. https://github.com/owl-project/owl

[48] Ingo Wald, Will Usher, Nathan Morrical, Laura Lediaev, and Valerio Pascucci.

2019. RTX Beyond Ray Tracing: Exploring the Use of Hardware Ray Tracing

Cores for Tet-Mesh Point Location. In High-Performance Graphics - Short Papers,
Markus Steinberger and Tim Foley (Eds.). The Eurographics Association. https:

//doi.org/10.2312/hpg.20191189

[49] Roger Weber, Hans-Jörg Schek, and Stephen Blott. 1998. A Quantitative Analysis

and Performance Study for Similarity-Search Methods in High-Dimensional

Spaces. In VLDB.
[50] Jordan Wood. 2008. Filter and Refine Strategy. Springer US, Boston, MA, 320–320.

https://doi.org/10.1007/978-0-387-35973-1_415

[51] Tiancheng Xu, Boyuan Tian, and Yuhao Zhu. 2019. Tigris: Architecture and

Algorithms for 3D Perception in Point Clouds. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (Columbus, OH, USA)

(MICRO ’52). Association for ComputingMachinery, New York, NY, USA, 629–642.

https://doi.org/10.1145/3352460.3358259

[52] Stefan Zellmann, MartinWeier, and IngoWald. 2020. Accelerating Force-Directed

Graph Drawing with RT Cores. In 2020 IEEE Visualization Conference (VIS). 96–
100. https://doi.org/10.1109/VIS47514.2020.00026

[53] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest

Neighbor Search on GPU. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 1033–1044. https://doi.org/10.1109/ICDE48307.2020.00094

[54] Yuhao Zhu. 2022. RTNN: Accelerating Neighbor Search Using Hardware Ray

Tracing. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (Seoul, Republic of Korea) (PPoPP ’22).
Association for Computing Machinery, New York, NY, USA, 76–89. https:

//doi.org/10.1145/3503221.3508409

https://doi.org/10.15468/DL.QQ7KRQ
https://doi.org/10.15468/DL.QQ7KRQ
https://www.cvlibs.net/datasets/kitti/raw_data.php
https://www.cvlibs.net/datasets/kitti/raw_data.php
https://doi.org/10.1145/2503210.2503223
https://doi.org/10.48550/ARXIV.1908.10396
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1109/ISPASS.2017.7975294
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://www.intel.com/content/www/us/en/developer/articles/guide/real-time-ray-tracing-in-games.html
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.48550/ARXIV.1511.08228
https://doi.org/10.48550/ARXIV.1511.08228
http://library.isical.ac.in:8080/xmlui/bitstream/handle/10263/6765/Vol02_1936_1_Art05-pcm.pdf
http://library.isical.ac.in:8080/xmlui/bitstream/handle/10263/6765/Vol02_1936_1_Art05-pcm.pdf
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.2312/conf/EG2013/short/037-040
https://doi.org/10.2312/conf/EG2013/short/037-040
https://doi.org/10.1109/CVPR.2001.990547
https://doi.org/10.1109/CVPR.2001.990547
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1145/3577193.3593738
https://doi.org/10.1145/3577193.3593738
https://raytracing-docs.nvidia.com/optix7/guide/index.html
https://raytracing-docs.nvidia.com/optix7/guide/index.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/rtx/ray-tracing
https://www.openstreetmap.org
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/2206.01382
https://doi.org/10.1002/asna.202013833
https://doi.org/10.1002/asna.202013833
http://graphics.stanford.edu/data/3Dscanrep/
https://doi.org/10.1145/965105.807479
https://doi.org/10.1145/965105.807479
http://sites.computer.org/debull/A01DEC-CD.pdf
https://github.com/owl-project/owl
https://doi.org/10.2312/hpg.20191189
https://doi.org/10.2312/hpg.20191189
https://doi.org/10.1007/978-0-387-35973-1_415
https://doi.org/10.1145/3352460.3358259
https://doi.org/10.1109/VIS47514.2020.00026
https://doi.org/10.1109/ICDE48307.2020.00094
https://doi.org/10.1145/3503221.3508409
https://doi.org/10.1145/3503221.3508409

	Abstract
	1 Introduction
	2 Background
	2.1 k-Nearest Neighbour Search
	2.2 Ray Tracing Architecture
	2.3 Programming and Execution Model
	2.4 RT-kNN: kNN on RT architecture

	3 Filter-Refine
	3.1 Arkade Filter-Refine Reduction
	3.2 Correctness of Arkade FR Reduction

	4 Monotone Transformation
	5 Discussion
	5.1 Inclusion property to generalize RT-kNN
	5.2 Other Distances
	5.3 Choice of radius

	6 Evaluation
	6.1 Performance Evaluation
	6.2 Performance Analysis

	7 Related Work
	7.1 Non-RT Applications Accelerated With RT Architecture
	7.2 Tree-based, GPU-accelerated kNN

	8 Conclusion
	Acknowledgments
	References

