
Garbage Collection for Mostly Serialized Heaps
Chaitanya S. Koparkar

Indiana University
Bloomington, USA

ckoparka@indiana.edu

Vidush Singhal
Purdue University
West Lafayette, USA
singhav@purdue.edu

Aditya Gupta
Purdue University
West Lafayette, USA
gupta782@purdue.edu

Mike Rainey
Carnegie Mellon University

Pittsburgh, USA
me@mike-rainey.site

Michael Vollmer
University of Kent

Canterbury, United Kingdom
M.Vollmer@kent.ac.uk

Artem Pelenitsyn
Purdue University
West Lafayette, USA
apelenit@purdue.edu

Sam Tobin-Hochstadt
Indiana University
Bloomington, USA

samth@cs.indiana.edu

Milind Kulkarni
Purdue University
West Lafayette, USA
milind@purdue.edu

Ryan R. Newton
Purdue University
West Lafayette, USA
rrnewton@purdue.edu

Abstract
Over the years, traditional tracing garbage collectors have
accumulated assumptions that may not hold in new language
designs. For instance, we usually assume that run-time ob-
jects do not hold addressable sub-parts and have a size of at
least one pointer. These fail in systems striving to eliminate
pointers and represent data in a dense, serialized form, such
as the Gibbon compiler. We propose a new memory manage-
ment strategy for language runtimes with mostly serialized
heaps. It uses a hybrid, generational collector, where regions
are bump-allocated into the young generation and objects
are bump-allocated within those regions. Minor collections
copy data into larger regions in the old generation, compact-
ing it further. The old generation uses region-level reference
counting. The resulting system maintains high performance
for data traversal programs, while significantly improving
performance on other kinds of allocation patterns.

CCS Concepts: • Software and its engineering → Com-
pilers; Garbage collection.

Keywords: Compilers, Garbage Collection, Data Represen-
tation
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1 Introduction
Sincemanualmemorymanagement is extremely error-prone,
high-level languages have, for several decades, employed
automatic memory management (AMM), such as tracing
garbage collectors and reference counting. During this time,
the assumptions about the target language runtime varied
just like the design of languages themselves, and the particu-
lars of an AMM system is often influenced by the language it
is attached to. Attempts to design generic memory systems
have appeared over time but they still reflect assumptions
from their originating languages and implementations, and

new language designs can prompt new, unforeseen chal-
lenges for AMM.

Most established AMM designs target language runtimes
where program values are represented with pointers to small
objects allocated sparsely on the heap. These runtime objects
are atomic in two senses: first, they never change their shape,
and second, there are no sub-parts of the objects that are
individually addressable—the targets of pointers elsewhere
in the heap. Another common assumption is that an object
has the size of at least one pointer.
Recently, a novel approach to representing program val-

ues as dense structures (i.e. pointer-free, serialized byte ar-
rays) has been studied. This has huge performance advan-
tages [11, 15, 18] due to minimized scattered memory ac-
cesses and maximized data locality. Several works have ex-
plored computing directly with serialized data representa-
tions of varying density: Cap’N Proto [27], FlatBuffers [12],
Compact Normal Form (CNF) [30], Dargent [7]. Such effi-
ciency is also achieved by the Gibbon compiler [29] for a
polymorphic, higher-order, strict subset of Haskell. Gibbon
compiles programs to C code and employs whole-program
compilation and monomorphization.
In Gibbon’s implementation, the heap hosts dense struc-

tures residing in regions, which represent growable units of
allocation. Each region contains a single value (correspond-
ing to a logical value from the source language), which is
made up of numerous objects (allocations corresponding to
data constructors); e.g., a list value can consist of several
cons-cell-objects. Objects in the same region are packed side-
by-side and pointers between them are the exception rather
than ubiquitous1.

1Consider, for example, the following definition of the List datatype:
data List = Cons Int List | Nil. The Cons data constructor has
the Int value inlined immediately after a one-byte constructor tag; the tail
is treated the same and inlined immediately after the 8-byte integer. So, a
list with 100 elements can fit in 901 contiguous bytes: 9 × 100 plus one byte
for the Nil constructor.
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With densely represented values, pointers have to be em-
ployed sometimes to recover some of the flexibility or space
efficiency (sharing) of the traditional pointer-based approach.
E.g. in Gibbon, so-called indirection pointers preserve asymp-
totic space and time complexity, e.g., when compiling a pro-
gram that shares common data between two values. The
compiler automatically extends the datatype to include a
tagged indirection pointer, e.g. Ind (Ptr List), as an implicit
extra case in the sum type. Crucially, such pointers allow
objects to refer to objects in other regions and make Gibbon
heaps only mostly serialized.
Prior work on AMM for mostly serialized heaps used

region-based memory management (MLkit [23], UrWeb [9]).
In these works, object lifetime is determined automatically
by the compiler and it depends on the lexically-scoped region
the object is assigned to. Object lifetimes must be conserva-
tive and may be overly long, in the worst case, equivalent
to the entire program execution. In pathological cases, this
can lead to unbounded space leaks [23]. Gibbon’s approach
is similar, but indirection pointers can cause objects to stay
alive beyond their region’s lexical scope, thereby prompting
the need for an additional region-level reference-counting
scheme [14]. In contrast, traditional tracing garbage collec-
tors, while not garbage free, can bound the heap size using
the semi-space strategy [8]. For that reason, MLKit later
added backup garbage collection within regions [10].
Tracing collectors are attractive but cannot be used with

mostly serialized heaps directly. Supporting denser data rep-
resentations violates some of the usual assumptions baked
into many memory management systems, namely: (1) the
heap consists of objects of statically-known sizes (plus ar-
rays) connected by pointers, (2) pointers always refer to the
starting address of the target object, and (3) every data con-
structor (e.g. a node in a tree or a cons-cell in a list) is its
own independent object in memory at runtime.
This paper tackles the above challenges and presents an

AMM system for mostly serialized heaps in the context of
the Gibbon project. Our contributions are as follows:

• The first practical and complete solution to automatic
memorymanagement inmostly serialized heaps.We adopt
a generational collector design, with copying collection for
the young generation while keeping Gibbon’s reference-
counted regions for the old generation. This hybrid ap-
proach (similar to Ulterior [3]) enables fast bump-allocation
of new objects and regions, while retaining efficient han-
dling of large and growing regions.

• Novel design choices prompted by our unusual setting.
We introduce new regions during collection time, to keep
all roots valid after collection (Section 3.1). Because val-
ues continue growing after promotion to the old genera-
tion, we allow allocation into old-generation regions (Sec-
tion 3.3), which, in turn, incurs a need for a remembered
set. We allow sharing, in spite of the fact that many objects
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Figure 1. Run time representation of regions in Gibbon (and
GC-Gibbon’s old generation). This particular logical region
is made up of two chunks, with an end-of-chunk pointer link-
ing the data. There’s an incoming tagged indirection which
causes the refcount to be 1. Pointers occuring in the data
are shown with solid arrows, whereas other implementation
related pointers are shown with dashed arrows.

are smaller than a word-sized pointer, and thus develop a
new approach to forwarding pointers (Section 3.4).

• An evaluation of the resulting system—GC-Gibbon—on
both tree-traversals, which are favorable for the serial-
ized data approach, and benchmarks that stress small ob-
ject allocation, where Gibbon used to be at its weakest
(Section 5.1). We show that GC-Gibbon retains Legacy-
Gibbon’s strong performance on tree-traversals and at-
tains reasonable performance on out-of-order, small al-
locations, approaching mature systems. For small allo-
cations, our system is 3.79×, 0.46×, and 1.09× geomean
faster than Legacy-Gibbon, GHC, and Java, respectively.
For tree-traversals, our geomean speedup is 1.02×, 2.19×
and 1.5×. Gibbon’s memory consumption reduces to 47%
(geomean) on the small allocation benchmarks. We also
evaluate our design choices in Section 5.2.

2 Anatomy of Mostly Serialized Heaps
In this section we overview mostly serialized heaps as im-
plemented in Gibbon and give examples when the approach
shines or falls short.

To serialize the data representation Gibbon uses LoCal [14,
28] (Location Calculus), a first-order intermediate represen-
tation (IR) with an explicit byte-addressed, mostly serialized
data layout. Gibbon converts input programs into LoCal
programs using location inference (a variant of region infer-
ence [23, 25]), and thereby makes explicit the byte-level data
layout of all values.

Regions, objects, and chunks. In LoCal, all values re-
side within regions. Every region itself resembles a heap with
a single allocation cursor, which is used to perform all writes
in it. The allocation cursor always points to the next avail-
able cell on the heap, and new objects are bump allocated.
Locations are addresses within a region that are used to read
and write raw data. LoCal always allocates objects in a re-
gion in order—every location in a region must be written to
before a new writeable location can be created after it. This
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serial ordering imposed on locations is what serializes the
resulting value.
There are two subcomponents to each object: there is

the fixed portion of an object, consisting of a tag, and any
constant-sized fields such as integer scalars. Then there is the
extended portion of the object which fills a variable number
of bytes due to child objects being “inlined” within its rep-
resentation. Even the extended object may be smaller than
the complete logical value, which would include all memory
reachable by the transitive closure of any indirections.
Gibbon allocates a constant-sized chunk of contiguous

memory for each fresh region, as Figure 1 shows. When this
chunk is exhausted, a new one which is double in size is
allocated and linked with the previous one using a pointer.
This doubling policy is used up to an upper bound, after
which constant-sized new chunks are allocated2.

In order to detect if a chunk is exhausted, every write
operation needs to know where the current chunk ends, so
that it can perform bounds checking. For this reason, every
location is dilated to be a pair of (alloc,end) cursors at run
time. To mark that the serialized stream of data continues in
another chunk Gibbon implicitly adds yet another reserved
constructor—and thus one-byte tag value—to each datatype:
(EoC Ptr), which signals an end of chunk and stores a pointer
to the head of the next chunk. We refer to these pointers as
end-of-chunk pointers. When a reader hits an EoC tag, they
must use the stored pointer to resume reading. We refer to
read or write pointers into chunks as cursors because of their
largely contiguous motion.

Sharing via tagged indirection pointers. Tagged indi-
rection pointers enable a program to share a value among
multiple locations. For example, one might write code to
construct a binary tree node as
let x = buildTree n in Node n x x

and expect a single, shared value to be allocated for the left
and right subtrees. But without a way to store the addresses
of previously allocated values in the data representation,
the right subtree would have to be allocated by copying the
entire left subtree at the appropriate location. To avoid copy-
ing, Gibbon implicitly compiles every datatype d to have an
additional reserved constructor (Ind (Ptr d)), which stores
an absolute pointer to a value of type d. Given such addi-
tional constructors, Gibbon can compile the above code to
the following:
let x = buildTree n in Node n x (Ind (addrOf x))

In this version, Gibbon can ensure that the call to buildTree

allocates directly in place, in the left subtree after the Node

tag. Thus a pointer is needed only for the right subtree:

2Keeping the initial chunk small is optimal in situations where a region
contains a small value. But if a region needs to grow to store a large value,
the doubling policy would amortize the overall allocation overhead.

C n Ind…………N 4

data List = Cons Int List | Nil

mkList 0 = Nil

mkList n = Cons n (mkList (n-1))

Figure 2. Gibbon source code for mkList and in-memory
representation of its result. C is short for Cons.

reverse Nil acc = acc

reverse (x:xs) acc = reverse xs (x:acc)

N

C nC 0 Ind C nC 1 Ind

C nC n-1 Ind C nC n Ind

…

…

Figure 3. Gibbon source code for accumulator-style list re-
version and in-memory representation of its result. C is short
for Cons and N is short for Nil.

Indirection pointers are critical to Gibbon’s ability to com-
pile functions without changing their asymptotic complexity.
They provide “opt in” pointers, with the default case being
dense serialization, and the exceptional case being indirec-
tion. The runtime overhead (branching on a one byte Ind

constructor) is placed on the exceptional case.

The Splendors and Miseries of Gibbon. Dense repre-
sentations of data are sensitive to allocation patterns of algo-
rithms in use. Here we show one example where Gibbon is
at its best—in-order allocations—and another one where Gib-
bon’s approach suffers the most—out-of-order allocations.

Figure 2 shows the Haskell source for a simple mkList func-
tion, as well as the resulting structure in memory. Thanks
to the destination-passing style [21] LoCal employs, Gibbon
is able to produce densely represented list of integers in the
first chunk of the output region. If the list does not fit in
one chunk, Gibbon will allocate more and connect the two
together. This representation is still far more efficient than
the traditional linked structure where every node involves
an isolated allocation.

Gibbon programs use bump allocation in regions to achieve
efficient, linear allocation patterns, such as that of mkList,
where the result value, the constructed list, is laid out in a sin-
gle region. But if a function’s allocation pattern differs, such
as when reversing a linked-list or when building a binary tree
by allocating its right subtree before the left, the resulting
value is placed across multiple regions. Consider the Haskell
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code for the standard accumulator-style list-reverse function
given in Figure 3. For every successive recursive call, Gib-
bon has to allocate a new region for the new accumulator
value, since it does not have any other region to use (the
destination region for the result cannot be used yet because
the intermediate values of the accumulator do not have an
obvious connection to the overall result). As a result, every
output cons cell goes in a separate region, linked together
using indirection pointers—a traditional linked list!
Programs like reverse which allocate small regions at a

very high rate show the overheads of region allocation and
collection in Gibbon. In fact, the list-reverse program com-
piled by Gibbon is 4× slower than its pointer-based version.
This isn’t surprising because the Gibbon program performs
the same number of region-malloc’s as the pointer-based
version does for objects, but also does additional work to
track region metadata information such as the reference
counts and outsets (pointers to regions to which objects in
this region point, shown in Figure 1).

Another problem that is highlighted in Figure 3 is that of
fragmentation. First, reverting to a pointer-based represen-
tation means all subsequent traversals of this list would be
slower because of poor data locality and pointer chasing. A
little slower than in a traditional pointer-based heap, because
of processing the extra tag-check on each indirection pointer.
Second, the space usage is not efficient, with only one Cons

cell per region, most space is left unoccupied.

3 Design of GC-Gibbon
GC-Gibbon adopts a copying generational collector with
compacting ability for its young generation and keeps Gib-
bon’s reference-counted regions for the older generation.
The old regions, however, use deferred reference counts now.

All new chunks are allocated in the young generation by
bumping the allocation pointer. When the young generation
becomes full (i.e. exceeds a certain threshold), it has to be
collected: live data is copied to the old generation and the
young generation is reset. We retain Gibbon’s reference-
counted regions for the old generation. After copying is
complete, any old-generation regions that are dead as per
the deferred reference counting mechanism are freed. In
the future we plan to extend this with an additional tracing
collector to collect regions in the old generation.
In the next sections, we explain how we treat a minor

collection: tracing the young generation starting from the
roots and copying to a different region representation in the
old generation where regions are granted their own growing,
memory allocations, and equipped with extra metadata.

3.1 Managing GC Roots
Shadow Stack. We use a shadow-stack [13] to maintain

a root set of live objects for collection. Following the con-
vention, addresses of objects (locations in LoCal) that are

C 2 C 1 N

Young Gen.

C 2 C 1 N

Old Gen.
1

2

3

oldest

newest

1 2 3

(a) Evacuating GC roots from oldest to newest creates a compact
old-generation object with no indirection pointers.

C 2 C 1 N

Young Gen.
C 1 NInd

C 2 Ind1

2

3
1

2

3oldest

newest

(b) Evacuating GC roots from oldest to newest creates an old-
generation object with unnecessary indirections.

Figure 4. Rootset sorting. The root numbers are indicative
of their evacuation order; root 1 is evacuated before root 2,
and so on.

live after an allocation point are spilled to the shadow-stack,
and are restored later, potentially having been updated by
an intervening collection. Spilling is also necessary across
function call sites, as the function might perform allocations.
Along with the spilled location, we also spill and restore

the end-of-chunk address for the chunk that the spilled loca-
tion belongs to. There are two reasons: (1) if the location is
in a young-generation chunk, it will be promoted to the old
generation, and its end address will change, and (2) if it’s in
an old-generation chunk, the collector would require its end
address to access the region-level metadata (reference count,
outset etc.) whose address is stored at the footer. Also, the
type of the value residing at the spilled location is stored on
the shadow-stack. It serves as a numeric index into an info-
table (described in Section 4) that stores layout information
required to guide the evacuation routine.

Evacuation order of GC roots. Like other tracing col-
lectors, the order in which roots are processed influences the
layout and locality of the resulting old-generation heap [1].
However, our collector is even more sensitive to this order-
ing: certain traversal orders produce a compact heap with no
indirection pointers, while some others produce significantly
pointer-heavy heaps.
To illustrate sensitivity of our collector to the root order-

ing, we consider the young generation and the root set in
Figures 4a and 4b. The young-generation object is identical
in both cases, but the order of GC roots corresponding to the
child objects is different. In Figure 4a, the oldest root corre-
sponds the parent object, and younger roots correspond to
child objects deeper in the graph. In Figure 4b, the roots are
ordered in the opposite order. This ordering of roots in the
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root set is a consequence of different workloads: in-order allo-
cators like mkList tend to create root sets like Figure 4a, while
reverse-order allocators like reverse tend to create root sets
like Figure 4b. If a collection is triggered at this point, there
is no fixed order of root set traversal (e.g. newest-to-oldest
versus oldest-to-newest) that would handle both examples
efficiently3. For these list examples, an efficient traversal
starts evacuation with the head of the list, promoting the
entire list into a single old-generation region (Figure 4a).
An inefficient traversal would evacuate the tail of the list
first, and then subsequently evacuate earlier parts of the list
which would be linked by (unnecessary) indirections to the
already-evacuated portions (Figure 4b).
The key insight here is to pick an ordering that consis-

tently evacuates upstream data earlier, irrespective of the
order of allocation. Specifically, we want a traversal order
that (1) evacuates roots for the newer regions before the
older regions, and (2) within each region, evacuates roots
that are towards the beginning of the region before roots
that are towards the end.
We get a favorable ordering as follows. First, we bump

the allocation pointer of the young generation backwards.
That is, the allocation pointer starts at the end of the young
generation (the high address), and moves towards the start
(the low address). Next, we sort the root set such that roots
corresponding to objects at lower addresses appear before
those at higher higher addresses. This policy gives us both
the desired properties because objects towards the beginning
of the region already occupy addresses lower than those of
objects towards the end, and the reversed bump allocation
puts newer regions at addresses lower than those of older
regions.
For a desirable post-collection heap, indirections should

only be proportional to actual sharing in the data. To quantify
this notion more precisely, we define an optimal heap with
minimum indirection count:

Definition 3.1 (Minimal indirections post-collection). The
minimum number of indirections post-collection includes:
up to one per root, plus 𝑁 − 1 indirections for every object
which has 𝑁 > 1 references to it.

If a live object has only a single reference to it, then it
must be placed in the same region as the object from which
it is reachable. The per-root indirections are there because
the roots themselves represent pointers into the heap data.
Further, we place these pointers in fresh regions only if the
object has not been copied already, otherwise, the root is
directly updated to point to the object’s new address.

Our post-collection heaps always achieveminimal, sharing-
only indirections, as in Definition 3.1. This compactness
comes at the cost of sorting the roots. In practice, root sets
are small enough that the time spent on sorting is worth the
3We say that a traversal order is efficient if it produces compact heaps and
introduces minimum unnecessary fragmentation.

resulting improvement. Also, the root set is bounded by the
program stack size. If we wanted to further bound sorting
time to a constant, we could use a partial sorting algorithm,
or, completely skip sorting, trading it off against having more
indirections in the post-collection heap.

3.2 Bird’s-Eye View of Evacuation
We now sketch the algorithm to evacuate each root in the
root set. Here we focus on evacuating completely written
objects, deferring the discussion of partially-written objects
to Section 3.3 and sharing to Section 3.4
The collector processes all roots present on the shadow-

stack one by one. For each root, it first checks whether
a young-generation object has already been evacuated, in
which case it updates the root to have the the correspond-
ing addresses of the relocated data in the old generation.
Otherwise, it allocates a fresh region in the old generation
to relocate this object. This fresh region can grow during
collection, using the normal policy of doubling the size of
each additional chunk in the linked series of chunks. Then,
the collector learns the kind of object it is evacuating by in-
specting the first tag in the object, based on which it carries
out the evacuation. Once evacuation is complete, the start
and end addresses of the root are updated. The pseudo-code
of the evacuation algorithm is given in Appendix D.
The first tag of an object defines this object’s kind and

informs evacuation. Below we explain the strategy for every
object kind.

Tagged indirection pointer: If the target of the pointer
is in the young generation, it is inlined by copying its data.
Otherwise, the indirection pointer is copied as it is. In the
latter case, the indirection pointer written by the collector is
an old-to-old pointer, and the reference count of the region
containing the target object must be updated as our (deferred)
reference counts include only old-generation pointers.
Updating reference counts requires accessing the target

region’s metadata, which must be findable given only the
contents of the tagged indirection pointer being copied. To
accomplish this we use the 64-bit indirection pointers to
pack in both (1) the address of the target object, and (2)
the offset from there to the target chunk’s footer—which is
where the region metadata resides. We give details of this
pointer encoding in Section 4.

Recall that the mutator uses indirection pointers to share
objects among different regions. There is additional work
required here to carry forward this sharing into the old gen-
eration. We postpone this discussion to Section 3.4.

End-of-chunk pointer: Due to the pretenuring policy
(Section 3.3) the target of an end-of-chunk pointer is always
in the old generation, and thus an object is considered com-
pletely evacuated upon reaching this tag. But, we still need
to combine metadata information for two regions: (1) the
fresh region that was created to copy the object that ends
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in this end-of-chunk pointer, and (2) the old-generation re-
gion that was created earlier due to pretenuring to store the
remainder of this object. For this reason, all end-of-chunk
pointers also need to encode an offset from their target to
the target chunk’s footer.

Burned or forwarded object: Object that has already
been evacuated, discussed in Section 3.4.

Cauterized object: Partially-written object, discussed in
Section 3.3.

Regular data constructor: If the tag is not among the
reserved tags listed above, it corresponds to an allocation of
a regular data constructor and is copied by referring to the
info-table (Section 4). Its fixed portion, consisting of a tag
and constant-sized fields, is copied directly using memcpy. The
extended portion, consisting of child objects occupying vari-
able number of bytes, is processed by recursively4 inlining
the children into the destination region.

3.3 Growing Partially-Written Objects
Certain objects encountered by GC-Gibbon’s copying collec-
tor might be only partially written. For example, the mutator
could be in the middle of allocating a tree structure when
it triggers a collection, which leaves the young generation
with a region containing a tree node having a left field but
no right field (yet). When such a tree node is promoted to the
old generation, the collector must stop copying after the left
field, otherwise it will keep reading uninitialized data. Thus
the collector must be able to detect the ends of such partially-
written objects. Furthermore, once the minor collection is
complete the collector must decide where to grow this object,
that is, where to restart construction of the remainder of the
object (the right field)—in the young or in the old generation.
We use a region’s allocation cursor (Section 2) to detect

partially-written objects. Every region has a single allocation
cursor, where the next object would be written. As a corol-
lary, if a region does not have an allocation cursor, it cannot
have any partially-written objects in it. Before beginning
copying, the collector writes a special reserved tag at all live
allocation cursors, effectively cauterizing the regions to mark
the end of initialized data. The copying routine described
in Section 3.1 stops copying upon reaching reaching this
tag, so as to not read any uninitialized data. To support this,
the mutator spills all live writeable locations to a separate
shadow-stack before starting a collection, and restores their
updated addresses after the collection is complete. Regions
that contain a fully constructed value do not have an alloca-
tion cursor, as they do not have any writeable locations in
them. Correspondingly, such regions do not undergo cauter-
ization and the live objects within them are promoted in the
standard way.

4We use a worklist instead of call-stack based recursion for efficiency.

The design choice of where to restart construction of the
remainder of partially-written values is a tradeoff between
(1) requiring a write barrier for new indirection pointers
written into the old generation, and (2) sacrificing the ben-
efits of pretunuring large and growing regions into the old
generation.

Design choice 1: Restarting construction in the young
generation: Wewould allocate one young-generation chunk
for each partially-written object that was promoted to the
old generation, and, to continue its construction, update its
allocation cursor to point to the beginning of the new chunk.
Next, we would use an end-of-chunk pointer to link the end
of the promoted object to the beginning of this fresh young-
generation chunk. These end-of-chunk pointers (pointing
from the old generation to the young generation) would
serve as a remembered set of roots for the subsequent minor
collection. However, crucially, all writes would now always
happen in the young generation. As a result, and since Lo-
Cal is a pure language, this remembered set would remain
constant until the subsequent collection. Moreover, all new
indirection pointers would be young-to-old pointers, and
could be created without a write barrier (for maintaining
a separate remembered set), making them fairly cheap to
create. With this policy, we would use a remembered set of
end-of-chunk pointers that is updated once per collection,
instead of a remembered set of indirection pointers that is
maintained by the mutator using a write barrier.
While this policy reduces the cost of indirection point-

ers, it precludes the collector from performing pretenur-
ing [5, 19, 26], which requires that the mutator be able to
allocate certain long-lived objects directly in the old gener-
ation. This would have a significant impact on the perfor-
mance of programs that allocate large values, often using
a small number of regions. Such programs would exhaust
the young generation frequently and trigger a collection.
Moreover, programs that have a large number of regions un-
der construction simultaneously could cause an exceptional
situation where after the minor collection, a large portion
of the young generation is populated by these new chunks
for older promoted values, also increasing the number of
collections (unless the young generation is allowed to grow).

Design choice 2: Restarting construction in the old
generation: In GC-Gibbon we use the dual of the previous
choice, namely to continue the construction of partially-
written objects in the old generation. After an object is pro-
moted, its allocation cursor is updated to point to the frontier
of its old-generation chunk, and no new chunks are created
in the young generation. As discussed above, the choice
to allow allocations directly in the old generation has two
consequences: the collector can perform pretenuring, but
pointer creation needs to be protected by a write barrier
since the remembered set of indirections pointing from the
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old to young generation can dynamically grow5. While such
a write barrier is expensive, we already amortize its overhead
by minimizing the number of indirection pointers. Also, this
write barrier is no worse than what already exists in Gibbon,
which has to potentially update reference counts and outsets
when creating indirection pointers. On the plus side, pre-
tenuring is vastly beneficial for programs that allocate large
data structures—exactly the kind of bulk-data-processing
programs which are Gibbon’s speciality.

We adopt the following pretenuring policy: the first chunk
of every region is allocated in the young generation, but all
subsequent chunks directly start in the old generation. After
a small prefix, the remainder of a large structure would be
written only once and never copied by the collector, similar to
Gibbon. The reasoning behind this policy is that the lifetime
of a structure is at least the time required to construct it,
which could be quite large for large structures. Analogous
to the accepted wisdom that old objects tend to live even
longer, large regions are more likely to grow even bigger.
Also, in our experience typical Gibbon programs tend to not
require many indirection pointers, so we try to optimize the
more common case. This design choice has a big impact on
benchmarks evaluated in Section 5.1 (Table 2).

3.4 Maintaining Sharing During Collection
An object can have more than one inbound pointer, and thus
a tracing collector must maintain sharing as it relocates data.
For example, the rootset can contain stack variables with
multiple pointers into different parts of the same object, as is
the case when the mutator recurs through multiple levels of
a tree. If we fail to detect sharing while copying live data, all
the local variables on the stack may end up with their own
copy of the data, which is wasteful.

There are several challenges to maintaining sharing given
a dense, mostly serialized heap. First, there is insufficient
space for forwarding pointers inside many objects’ layouts.
Second, when the collector is mid-way through copying a
object, and finds a sub-portion of it has already been copied,
it needs a skip-over address to skip over the already-copied
portion and resume copying after it. The simplest solution
to both these challenges is to maintain two side-metadata
tables during collection: (1) to store all forwarding informa-
tion, i.e. a table that maps (start,end) intervals in the young
generation to their corresponding addresses in the old gen-
eration, and (2) another table to store skip-over addresses.
Unfortunately, using these tables naively is expensive and
makes the collector several times slower. Instead, we explore
an approach that stores this metadata in the copied portion
of objects where possible, and only uses side-metadata tables
as a fallback (the slow path), as we explain next.

5The remembered set can never shrink, because pointers in the old genera-
tion cannot be deleted by the mutator as LoCal is a pure language.

C n IndN 4 E C nN

Young Gen.

E E

Inbound indirection pointer 1 Inbound indirection pointer 2

6
Obj1 Obj2

byte  addrs: 0 1 9 10 11 19 100 101  109 110 111

(a) A young-generation heap with two objects, Obj1 and Obj2. Obj1
has one inbound indirection pointer from an object not pictured
here. Obj2 has two inbound indirection pointers: from Obj1 and
from another object not pictured here. N is short for Node and E is
short for Empty (a binary search tree constructor).

C n

Young Gen. Old Gen.

C n EN 4 E▒▒▒▒ ▒▒▒▒▒▒FF B

1 byte 1 byte

C nN E6 ▒▒B
Obj1 Obj2

0 1 9 10 11 19 100 101  109 110 111 1000 1001  1009 1010 1011

(b) The young-generation heap from (a) after Obj1 has been evacu-
ated. The collector has been able to add two forwarding pointers,
but one object (E) has been burned without a forwarding pointer.

Figure 5. An in-progress evacuation that illustrates how
objects are forwarded and burned.

Forwarding: The forwarding strategy we use follows
the principle of: (1) precisely marking each byte that is
copied, while (2) opportunistically including forwarding
pointers anywhere in the bytestream where there is room:
including wherever indirection pointers exist, and any data-
constructors with more than a pointer-sized quantity of
scalar data. We say that data marked in this manner is either
forwarded, by writing a forwarding pointer into its payload,
or, when too small for forwarding, burned, with each sta-
tus corresponding to another reserved tag value. We denote
these tags B and F. A “B” behaves like a single byte object,
whereas a 9 byte “F addr” object consists of the forwarded
tag followed by the new address of the object which previ-
ously lived at the same byte location as the forwarded tag.
This is illustrated in Figure 5a and Figure 5b.

When the collector needs to compute the forwarded ad-
dress of a given tag, it either reads it directly (if the object
was forwardable), or it reads a burned tag and scans to the
right looking for a forwarding entry within the same span.
Once such an entry is found, the address of the original tag
byte in question can also be computed via subtraction—as its
location relative to the forwarded object in the from-space
and to-space will be conserved. This conservation holds be-
cause: (1) inlining of data due to the presence of indirection
pointers is the only reason why an object could have differ-
ent sizes in the from-space and the to-space, and (2) each
indirection itself has enough space to store a forwarding
pointer after being evacuated. Thus, the forwarding address
of any object occurring in the span of bytes serialized before
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an indirection pointer can be computed in a straightforward
manner: we use the forwarding pointer that will be written
in place of the old indirection.
Consider a scenario where the from-space heap is as il-

lustrated in Figure 5b and the collector follows “inbound
indirection pointer 1” and reaches the burned tag in Obj1

at byte-address 9. It will now scan to the right and immedi-
ately discover a forwarding pointer at byte-address 10. This
forwarding pointer points to the to-space byte-address 1010.
The collector will compute the forwarded address of the
object at byte-address 9 as: 1010 - (10 - 9) = 1009.
Our goal in designing the sharing-preservation aspect of

our collection algorithm is to bound the amount of scanning
time necessary to resolve a forwarded address for any tag
residing in the from-space before collection. Nevertheless,
for completeness we need to also introduce a global table as
the place of last resort to store forwarding information. The
table maps (start,end) intervals in the from-space to their
corresponding start locations in the to-space. The collector
may enter in the middle of a burned interval, so the table
needs to be an interval map allowing forwarding-address
lookups keyed on locations anywhere within the forwarded
interval.

We fall back to the table when we fail to find forwarding
information by scanning.We can fail by hitting the end of the
span, which we recognize based on encountering an already-
burned tag of the next span. The collector also exposes a
𝑚𝑎𝑥_𝑠𝑐𝑎𝑛 parameter for the maximum number of burned
bytes that should be traversed in search of a forwarding
pointer. By default this is set to the young-generation chunk
size. After scanning this many bytes, we fall back to the
global table to lookup forwarding information.
Symmetrically, with writing as with reading, after reach-

ing the end of the span or burning𝑚𝑎𝑥_𝑠𝑐𝑎𝑛 bytes, without
successfully forwarding, we populate an entry in the table.
Because the bound must hold from any starting location,
after successfully forwarding an object, we begin counting
again, up to 𝑚𝑎𝑥_𝑠𝑐𝑎𝑛. If we hit an indirection, it is itself
a forwardable object. In this case, we also mark the object
downstream from it as start of a new span (in addition to
resetting the𝑚𝑎𝑥_𝑠𝑐𝑎𝑛 counter).

Skipping-over: A worst-case scenario is, for instance, a
tree value with shape only, containing no scalars, but whose
subtree was already copied and burned. This value consists
exclusively of small, non-forwardable objects:

▒▒B▒▒▒▒N N B L…

Scanning to the end of this interval will fail to turn up a
forwarding pointer. Fortunately, the size of the problematic
interval is bounded by the chunk size of the starting region
in the young generation. The reason is that, otherwise, the

interval would contain a chunk redirection pointer to an-
other chunk, which itself is forwardable. Unfortunately, the
landlocked, evacuated value needs to not only have its new
forwarding address resolved (for writing an indirection in
the to-space), but the collector also needs to know where
the burned value ends in the from space, so that it can sub-
sequently continue collection.
To this end, our algorithm introduces a second table for

storing skip-over addresses. The table provides a fallback and
a slow path for evacuation, just like the table for forwarding
pointers. However, our collector creates a table entry only
when it enters a region for the first time at a non-zero loca-
tion6. The reason is that values which begin at location zero
in a region never need to be skipped over in this way. Either
they are top-level values, or if they are referred to, it is via an
indirection, which itself is trivial to skip over. Furthermore,
such location-zero values are always forwardable, because
we leave enough room in the footer of each region chunk
to store a forwarding pointer. Conversely, when the collec-
tor stumbles on a transition to burned data in the middle
of a chunk, it switches to the slow-path, performing a table
lookup.

To support skipping ahead, the table stores only the end of
the entire burned interval, i.e. the end of the value rooted in
the first burned byte. This information is sufficient because
the collector can only jump into the middle of the burned
interval by following an indirection there. In that case, for-
warding information is needed but skip-over information is
not, because it is trivial to skip-over the value by skipping
over the indirection itself. Adjacent burned intervals are not
ambiguous with a single interval, because they correspond to
two logical values, and as such are copied by separate evacu-
ations resulting in separate entries in the table. In Figure 5b,
our collector would create an entry in the skip-over table
for the object at byte-address 109, since this object lives at a
non-zero location and is burned by following an indirection
pointer. The collector will look up this entry in the table if it
evacuates the object starting at byte-address 100.
In conclusion, this subsection introduced a sharing pre-

serving strategy, which, for completeness, includes side-
metadata tables for slow-path lookups of forwarding and
skip-over information. However, we expect that programs
take these slow paths rarely, because: (1) heaps generally
have a sufficient density of primitive data (ints, floats, strings)
or indirections such that there is a high density of forward-
able objects, and (2) skipping over already-evacuated values
is necessary only when the nursery contains sharing. The
latter case generally happens in programs that perform fine-
grained allocations of small regions, with a high percentage
of objects occupying location zero of their respective regions.

6In future work, static analysis may assist in ruling out sharing and lessening
this obligation.



Garbage Collection for Mostly Serialized Heaps

3.5 Write Barrier
As explained in Section 3.3, because we allow old-to-young
pointers, we need a write barrier on indirections written in
the old generation. On every write of an indirection, we test
the target address to see if it’s in the nursery, and if not we
add it to a remembered set. Our write barrier currently com-
pares the pointer against a (𝑠𝑡𝑎𝑟𝑡, 𝑒𝑛𝑑) range of addresses
for the nursery. Further optimizations to the “is in nursery?”
predicate are possible in the future7.
One important optimization we perform is to prevent

redundant chains of indirections, short circuiting them, in
the write-barrier. We perform an additional load to peek at
the tag of the target to which the new indirection points,
and if it is an indirection, we keep following it until we find
a non-indirection tag as the target. As with other aspects of
the design, this leverages the immutability of our heap to
maintain the invariant.

4 Implementation Details
We implement our AMM system in the open-source Gibbon
compiler8. Our implementation mainly changes Gibbon’s
runtime system with only a few additions to certain LoCal-
to-LoCal compiler passes. In the runtime, the region creation
routine is updated to create a chunk in the young generation
using bump-pointer allocation.
Our garbage collector is implemented in the Rust pro-

gramming language primarily because of its performance
characteristics along with a rich the standard library. The
Rust code is compiled as a dynamic system library (using
crate-type=["cdylib"]) and then linked with C code gener-
ated by GC-Gibbon. This choice has a side effect: we lose
potential compile-time or link-time optimization opportu-
nities between the C and Rust code9. However, we limit
the interaction between our C and Rust code to just one
function call, garbage_collect, which reduces any potential
slowdowns caused due to missed optimizations.

Info-table: We use a statically allocated info-table to
store the layout information required to evacuate objects
of different types. This table is populated by the program
when it starts executing. For each user-defined datatype
in the source program, the info-table has an entry of type
DatatypeInfo (given in Figure 12 in the Appendix). The main
evacuation loop operates like an interpreter consuming a
stream of byte-codes; when the object being evacuated starts
with a tag corresponding to a regular data constructor, (as

7For example, we could allocate the nursery in a fixed portion of the virtual
address space, so that a test on the pointer is sufficient for the is-in-nursery
test, without any additional loads for (dynamic) nursery bounds.
8https://github.com/iu-parfunc/gibbon/
9Since we use GCC to compile the generated C programs because it usually
produces more efficient code than Clang in our experience, especially for the
switch-heavy tree traversal programs. Besides, getting meaningful link-time
optimizations between code compiled using Clang and Rust is not trivial.

opposed to a reserved tags desribed earlier) it retrieves the
necessary layout information from the info-table.

Pointer encoding: At various points during collection,
the collector needs to know metadata information of a re-
gion which houses an object that is the target of a pointer
(indirection pointer or end-of-chunk pointer). For instance, if
writing an old-to-old indirection pointer, the target region’s
reference count needs to change; if promoting a chunk that
ends with a link to a pretenured chunk, the target region’s
set of chunks need to be updated. These metadata can be
accessed via the footer of the target chunk. To get to the
footer, we use a 64-bit pointer to store both: the address
of the target object and the offset from there to the target
chunk’s footer. The offset is stored in the 16 high-order bits.
As a result, the maximum chunk size in our system is bound
at 65K bytes (216).

Optimizing default region size: A performance anti-
pattern with previous versions of Gibbon was to allocate
a sizeable region of the default size, typically at least 1K,
and then write only a single constant-sized object to it, such
as one cell of a linked list. This wastes a lot of memory,
and in GC-Gibbon, can also cause many more collections
to occur. It is therefore profitable to identify certain regions
with statically bounded maximum size. We add such a static
analysis on Gibbon’s LoCal intermediate language. When
the compiler backend generates code for region allocation, it
overrides the default size with the static bound if it is smaller.
Implementing this requires analyzing all the locations that
allocate to a particular region, and then inferring the sizes
of objects written to these locations. The size of primitive
types such as ints and floats is known a priori. Expressions
that allocate a variably-sized serialized value (for example,
using recursion) are inferred to have an unbounded size.

5 Evaluation
In this section we evaluate our memory management system
using a variety of benchmarks taken from previous literature,
and two additional benchmarks—reverse and treeUpdate—
that stress the worse-case scenarios for our implementation.
Besides prior Gibbon (referred to as Legacy-Gibbon in the
rest of this section), we compare the performance of our
implementation to GHC10, which is especially optimized to
run functional programs which allocate lots of small objects,
and Java, which has a highly optimized and mature garbage
collector. For our experiments, we use a single-socket Intel
E5-2699 18 core machine with 64GB of memory and running
Ubuntu 18.04. We compile the C programs generated by our
implementation using GCC 7.5.0 with all optimizations en-
abled (option -O3). For comparing against Legacy-Gibbon,
we use its version 0.2 compiled from source. To ensure an

10https://www.haskell.org/ghc/
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Table 1. Run times of out-of-order and small-allocation
benchmarks (in seconds and relative to GC-Gibbon).

GC-Gibbon Legacy-Gibbon GHC Java

Benchmark 𝑇gcg 𝑇lg 𝑇lg/𝑇gcg 𝑇ghc 𝑇ghc/𝑇gcg 𝑇java 𝑇java/𝑇gcg

reverse 0.49 1.46 2.98 0.42 0.86 0.53 1.08
treeUpdate 0.77 4.17 5.41 0.37 0.48 0.56 0.73
coins 4.34 35.5 8.18 1.21 0.28 3.63 0.84
lcss 0.51 0.30 0.59 0.45 0.88 0.72 1.41
power 1.40 8.07 5.76 0.28 0.20 2.36 1.68

geomean - - 3.39× - 0.46× - 1.09×

Table 2. Run times of in-order allocation and bulk-traversal
benchmarks (in seconds and relative to GC-Gibbon).

GC-Gibbon Legacy-Gibbon GHC Java

Benchmark 𝑇gcg 𝑇lg 𝑇lg/𝑇gcg 𝑇ghc 𝑇ghc/𝑇gcg 𝑇java 𝑇java/𝑇gcg

buildKdTree 2.67 2.53 0.95 7.78 2.91 4.48 1.68
countCorr 1.77 1.77 1.00 3.00 1.7 4.47 2.52
allNearest 0.71 0.80 1.13 1.46 2.06 1.00 1.41
barnesHut 3.54 3.40 0.96 5.83 1.65 2.40 0.68
constFold 1.38 1.50 1.09 4.12 2.98 2.56 1.85

geomean - - 1.02× - 2.19× - 1.5×

apples-to-apples comparison, we port our bounding-region-
size optimization (Section 4) to Legacy-Gibbon. For GHC, we
use GHC 9.0.2, with options -threaded -O2. We use GHC’s
default collector [16] and control the size of its young gen-
eration with the run-time option +RTS -A <SIZE> -RTS. For
Java, we use OpenJDK 17.0.1 with its default collector and
control the size of its young generation with the option
-XX:NewSize=<SIZE>. Each reported measurement is the mean
of 10 runs, where each run records the wall-clock time re-
quired to run a benchmark. For Java, we do two additional
runs to warm up the JVM but don’t count their run time
when computing the mean. We oberved low variance in all
our measurements and therefore do not report it separately.

Benchmarks: We use two sets of benchmark programs:
(1) programs in Table 1 perform many out-of-order and

small-allocations where the mostly serialized approach
is weak,

(2) programs in Table 2 allocate or traverse a large data
structure, where the mostly serialized approach shines.

(We give brief descriptions of all benchmark programs in Ap-
pendix C.1. ) For GHC, we use strict datatypes in benchmarks,
which generally offers the same or better performance, but
avoids performance complications due to laziness. All pro-
grams use the same algorithms11 and datatypes, and are run
with the same inputs. For GHC and Legacy-Gibbon, we hold
the size of the young generation constant at 4MB. For Java,
11To workaround a stackoverflow error, we use for loops instead of recur-
sion for the Java implementation of reverse and treeUpdate.

Table 3.𝑀 is the total memory allocated by Legacy-Gibbon.
For GC-Gibbon, 𝑁coll is the number of minor collections,𝑀Y
is the memory allocated in the young generation across all
collections,𝑀O is the memory allocated in the old generation,
and 𝑅 is the relative memory usage calculated as, (𝑀Y +
𝑀O)/𝑀 ∗ 100.

Legacy-Gibbon GC-Gibbon

Benchmark 𝑀 𝑁coll 𝑀Y 𝑀O 𝑅 (%)

reverse 1.6 GB 64 256MB 146MB 25
treeUpdate 5.9 GB 612 2.6 GB 5MB 44
coins 44GB 1815 7.2 GB 757MB 18
lcss 337MB 18 75MB 425MB 148
power 17GB 3083 12.9 GB 54MB 76

geomean - - - - 47

the young generation starts with a size of 4MB, but is allowed
to grow if desired by the collector.

5.1 Evaluating Run Time and Memory Consumption
Run Time Performance. Tables 1 and 2 show the run

time results of GC-Gibbon to Legacy-Gibbon, GHC, and Java
on simple tree traversals from either of two classes: out-of-
order or in-order.
For small out-of-order allocation benchmarks (Table 1),

GC-Gibbon benefits from its fast bump-allocated young gen-
eration, whereas Legacy-Gibbon shows the overheads of
malloc-based region allocations. In the case of reverse, both
Gibbon versions need to allocate a new region per input
element, and thus 8M regions are allocated in this instance.
But despite this very high rate region allocation, GC-Gibbon
is 7% faster than Java and only 14% slower than GHC. The
lcss benchmark is surprisingly fast with Legacy-Gibbon. Ac-
cording to our initial observations, lcss’ allocation pattern
seems to naturally have a stack-like behavior and benefits
from Legacy-Gibbon’s region based memory management.
For in-order allocation and bulk-traversal benchmarks

(Table 2), Legacy-Gibbon has a home-turf advantage. Impor-
tantly, this advantage is not harmed under GC-Gibbon. Key
to this resilience is the pretenuring optimization described
in Section 3.3—for these benchmarks, only the first chunk is
allocated in the young generation and the rest are directly
allocated in the old generation. Due to this, Legacy-Gibbon
and GC-Gibbon also have similar memory usage for these
benchmarks. The slowdowns observed here are primarily
because GC-Gibbon’s pointer encoding mechanism, which
puts an upper bound on the largest chunk that it can al-
locate, namely 65K, unlike Legacy-Gibbon which sets this
upper bound to 1GB. However, both GC-Gibbon and Legacy-
Gibbon outperform GHC and Java on these benchmarks.

For small allocations, our system is 3.79×, 0.46×, and 1.09×
geomean faster than Legacy-Gibbon, GHC, and Java, re-
spectively. For bulk-tree-traversals, our geomean speedup is



Garbage Collection for Mostly Serialized Heaps

Table 4. Run times in seconds of benchmarks run with dif-
ferent GC configurations (explained in Section 5.2).

Benchmark Default NoBurn NoCompact Simple-
Barrier

NoBurn
+SB

NoCompact
+SB

reverse 0.49 0.43 11.8 0.49 0.44 11.9
treeUpdate 0.77 0.75 0.88 2.30 1.20 12.1
coins 4.34 4.32 4.31 10.45 10.3 10.4
lcss 0.51 0.53 0.54 0.52 0.52 0.53
power 1.40 1.34 1.36 1.38 1.40 1.44

1.02×, 2.19× and 1.5×. Overall, these results show that GC-
Gibbon offers significant performance improvements com-
pared to Legacy-Gibbon on small and out-of-order allocation
benchmarks, without degrading the performance on bulk-
traversal and allocation benchmarks. Legacy-Gibbon is ex-
tremely slow on certain workloads such as coins, power [17]
or treeUpdate, thereby discounting its use entirely if any part
of an application has allocation patterns like these.

Memory Consumption. Table 3 shows the memory allo-
cation behavior for the benchmarks from the small-allocation
group. GC-Gibbon has geomean 47% memory usage relative
to Legacy-Gibbon. Aligning with the runtime results where
lcss was GC-Gibbon’s weakest spot, the memory consump-
tion of this benchmark is higher compared to Legacy-Gibbon.

Sensitivity to Size of Inputs. Figure 6 shows the run
times of benchmarks using inputs of various sizes. The young-
generation size is held constant at 4MB. All the variants have
similar behavior, with Legacy-Gibbon being the slowest in
most cases. The graphs for reverse and treeUpdate show
how GC-Gibbon fixes especially poor asymptotics of Legacy-
Gibbon.
For memory consumption, we observe close to constant

improvement (as measured by the 𝑅 column in Table 3) when
varying the input size.

Other parameter sweep results are posted in Appendix C.2.

5.2 Evaluating Our Design Choices
To evaluate the effects of the design choices we made, we
run the benchmarks that stress the collector in six differ-
ent modes, each of which toggles a specific choice. All of
these modes (except SimpleBarrier) are configuration flags
provided to the collector. SimpleBarrier requires recompil-
ing the mutator since the write-barrier is inlined into the
mutator at compile time.

• Default: follow the design described in Section 3, with all
optimizations enabled.

• NoBurn: disable the forwarding pointer mechanism (Sec-
tion 3.4). and allow shared values to multiply. A benefit
is that writing forwarding pointers, burning data, and
maintaing side-metadata tables is not needed.

• NoCompact: disable compaction (pointer elimination).
For each indirection pointer encountered during evacu-
ation, if the target object is not already copied, it is put
into a fresh region and a new indirection pointing to this
fresh region is created.

• SimpleBarrier: disable elimination of redundant chains
of indirections (Section 3.5). This makes the write-barrier
more efficient by reducing the number of memory loads
it performs, but makes the collection more expensive be-
cause of the overheads associated with evacuating indi-
rections (due to forwarding, side-metadata tables, etc.).

• NoBurn+SB: combine NoBurn and SimpleBarrier.
• NoCompact+SB: combine NoCompact and Simple-Barrier.
The results are given in Table 4. At first glance, NoBurn mode
looks like the best choice. It is fast because it touches less
memory in the young generation, as it does not have to write
forwarding pointers or maintain side-metadata tables. But,
since sharing is disabled, it is very easy to run into a patholog-
ical worst-case that could cause the collector to copy an ex-
ponential amount of data, leading to inefficient space usage.
None of the benchmarks we considered here trigger this be-
havior, however. With respect to NoCompact mode, reverse is
24× times slower in this configuration since it has the highest
number of indirections among these benchmarks—8M, one
for each cons-cell. The effectiveness of the indirection-chain-
eliminating write-barrier is demonstrated by treeUpdate and
coins, both of which create long indirection chains and are
2-3× slower in this mode.

6 Related Work
The most closely related work to this paper is, of course,
Vollmer et al.’s Gibbon compiler [29], which was summarized
in Section 2. This paper presents a generational collector with
copying collection for the young generation while keeping
Gibbon’s reference-counted regions for the old generation.

Region-based Memory Management: The main moti-
vation behind region-based memory management[2, 22, 25]
was to bring some of the benefits of stack-based memory
management (a technique common in imperative languages
like Pascal and Algol) to higher-order functional languages,
primarily Standard ML. In this context, “region types” are a
feature of a type system that tracks what region of memory
a value is allocated into, with the goal of safely deallocating
all values in that region once it goes out of scope. This ap-
proach suffers from lack of prompt deallocation of memory
(Section 1). Also, some common patterns of functional pro-
gramming (e.g. tail recursive functions) can end up causing
memory leaks [23].

Various attempts at extensions or optimizations to region
systems have been proposed to address this, such as storage
mode analysis, where a compiler inserts special instructions
to reset the allocation pointer in a region if it can probe
the region contains no live values, essentially allowing its
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Figure 6. Run times in seconds of benchmarks using inputs of various sizes, the young-generation size is held constant at
4MB. The red line marks the input used for measurements reported in Tables 1 and 3.

contents to be overwritten [24]. Elsman and Hallenberg [10]
explored combining regions and copying collection in the
MLKit system. While MLKit uses regions, each object within
a region is traditional in every other way; the heap is not
serialized like it is in Gibbon. Its collector does not face the
challenges of copying serialized, partially-written objects,
but also doesn’t benefit from the resulting compaction.

GarbageCollection: The literature on traditional garbage
collection includes not only much work on tracing and refer-
ence counting independently, but also in combination. Our
proposed collector is similar to Ulterior reference count-
ing [3] which also has a copying young generation and a
reference-counting old generation. This work was further
extended in [20], which uses an efficient heap structure [4]
and reference counting, and also includes a backup tracing
collector. More recent work [31] has shown the performance
benefits of using an efficient heap structure and reference
counting. The LXR collector brings together several optimiza-
tions and heuristics, and introduces an efficient remembered
set and a low-overheadwrite barrier tomake reference count-
ing efficient, and is able to reclaim most memory without
any copying. There is ample opportunity to improve our
reference counting collector using these techniques.

Compressed heap data: Memory compression is avail-
able at the page level as an operating system feature, but it
has also been explored in the language runtime, for example
in Java for embedded devices [6]. More recent work on com-
puting with serialized data [27], can be viewed as a form of
compression.

7 Conclusions and Future Work
We presented a new approach to memory management for
mostly serialized heaps, as found in the Gibbon compiler
and its runtime system. This hybrid collector is able allo-
cate objects and regions quickly and coalesce objects, which
were scattered at the points of their allocation, into efficient,
serialized representations.
This work is the first step in a new direction that invites

further study and refinement. It is common in computer

science to trade-off time and space using compression tech-
niques, and these mostly serialized heaps point to opportuni-
ties to explore these tradeoffs more deeply in the context of
language’s in-memory representations. More prosaic, there
are additional optimizations to develop and apply to our
system to further close the gap with traditional implemen-
tation techniques on their “home turf”, (i.e. the worst-case
scenarios for Gibbon’s native representations). We also plan
to extend the reference counting strategy in the old gener-
ation with an additional tracing collector. Finally, a major
topic of future work is to scale the approach to the parallel
setting, both for the mutator and the collector.
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A Appendix: Sample Gibbon programs
In this section we present the details of some Gibbon programs, their translated LoCal IR code, and finally the C code that is
generated by Gibbon.

A.1 mkList: constructing a linked list

data List = Cons Int List | Nil

mkList :: Int → List

mkList 0 = Nil

mkList n = Cons n (mkList (n-1))

(a) mkList’s starting Haskell source code.

mkList :: ∀∀∀ 𝑙𝑟. Int → List@𝑙𝑟

mkList n = if n == 0 then Nil 𝑙𝑟 else

letloc 𝑙1
𝑟 = 𝑙𝑟 + 9 in

let tail: List@𝑙1
𝑟 = mkList [𝑙1

𝑟] (n-1) in

Cons 𝑙𝑟 n tail

(b) mkList compiled into LoCal IR by Gibbon

Figure 7

typedef struct GibCursorProd3_struct {

GibCursor field0; GibCursor field1; GibCursor field2;

} GibCursorProd3;

GibCursorProd3 mkList(GibCursor footer_r_289, / / Output region’s footer.
GibCursor loc_288, / / Output cursor.
GibInt n_30_97_141 / / Length of the linked list to create.

) {

/ / Check if the output region has more space, grow the region otherwise.
if ((loc_288 + 18) > footer_r_289) {

gib_grow_region(&loc_288, &footer_r_289);

}

if (n_30_97_141 == 0) {

*(GibPackedTag *) loc_288 = 1; / / Nil
GibCursor after_tag_573 = loc_288 + 1;

return (GibCursorProd3) {footer_r_289, loc_288, after_tag_573};

} else {

GibCursor loc_335 = loc_288 + 9;

*(GibPackedTag *) loc_288 = 0; / / Cons
GibCursor after_tag_582 = loc_288 + 1;

*(GibInt *) after_tag_582 = n_30_97_141; / / Element in the cons cell
GibCursorProd3 tmp_struct_5 = mkList(footer_r_289, loc_335, (n_30_97_141 - 1));

return (GibCursorProd3) {tmp_struct_5.field0, tmp_struct_5.field1, tmp_struct_5.field2};

}

}

Figure 8. mkList translated to C by Gibbon.

This code operates as follows. The arguments of mkList include the number n and a symbolic location 𝑙𝑟 , where the resulting
list of length n will be allocated. This allocation technique is a form of destination-passing style.In LoCal, a location 𝑙𝑟 is an
address within in a region 𝑟 and type 𝜏@𝑙𝑟 is assigned to a value of type 𝜏 residing at a location 𝑙𝑟 . If n is zero, mkList simply
allocates Nil at location 𝑙𝑟 . Otherwise, it starts constructing a cons cell. First it binds a location 𝑙1

𝑟 that is 9 bytes past the
location 𝑙𝑟 (one byte for the Cons tag and 8 bytes for the integer). Next, it recursively constructs a list of length (n-1) at location
𝑙1
𝑟 . Then it writes the Cons tag and the integer n starting at location 𝑙𝑟 , which completes the construction of this cons cell.

Gibbon’s location inference algorithm places the cons cell and its tail within the same region because the allocations in mkList

happen in order. Thus, the resulting list looks like the structure shown in Figure 2.
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A.2 reverse: reversing a linked list

reverse :: List → List

reverse Nil acc = acc

reverse (x:xs) acc = reverse xs (x:acc)

(a) Starting Haskell source code for accumulator-style
list-reverse.

reverse :: ∀∀∀ 𝑙𝑟 𝑚𝑠 𝑛𝑡. List@𝑙𝑟 → List@𝑚𝑠 → List@𝑛𝑡

reverse xs acc = case xs of

Nil → Ind 𝑛𝑡 (addrOf acc)

Cons (y:Int@𝑙𝑦
𝑟) (ys:List@𝑙𝑦𝑠

𝑟) →
letregion 𝑢 in

letloc 𝑜1
𝑢 = start 𝑢 in

letloc 𝑜2
𝑢 = 𝑜1

𝑢 + 9 in

let cpy: List@𝑜2
𝑢 = Ind 𝑜2

𝑢 (addrOf acc)

let acc': List@𝑜1
𝑢 = Cons 𝑜1

𝑢 y cpy in

reverse [𝑙𝑦𝑠
𝑟 𝑜1

𝑢 𝑛𝑡] ys acc'

(b) reverse compiled into LoCal IR by Gibbon.

typedef struct GibCursorProd6_struct { GibCursor field0; GibCursor field1; GibCursor field2; · · · } GibCursorProd6;

GibCursorProd6 reverse(GibCursor end_r_293, GibCursor end_r_294, GibCursor end_r_295,

GibCursor loc_292, GibCursor xs_31_98_145, GibCursor acc_32_99_146)

{

GibShadowstack *rstack = READ_SHADOWSTACK;

GibShadowstack *wstack = WRITE_SHADOWSTACK;

GibShadowstackFrame *frame;

if ((loc_292 + 18) > end_r_295) {

gib_grow_region(&loc_292, &end_r_295);

}

GibPackedTag tmpval_931 = *(GibPackedTag *) xs_31_98_145;

GibCursor tmpcur_932 = xs_31_98_145 + 1;

switch (tmpval_931) {

case 0: {

GibInt tmpval_937 = *(GibInt *) tmpcur_932;

GibCursor tmpcur_938 = tmpcur_932 + sizeof(GibInt);

gib_shadowstack_push(rstack, acc_32_99_146, end_r_294, Stk, PList_T);

gib_shadowstack_push(rstack, tmpcur_938, end_r_293, Stk, PList_T);

gib_shadowstack_push(wstack, loc_292, end_r_295, Stk, PList_T);

GibChunk region_939 = gib_alloc_region(32);

GibCursor r_356 = region_939.start;

GibCursor end_r_356 = region_939.end;

frame = gib_shadowstack_pop(wstack);

loc_292 = frame→ptr;

end_r_295 = frame→endptr;

frame = gib_shadowstack_pop(rstack);

tmpcur_938 = frame→ptr;

end_r_293 = frame→endptr;

frame = gib_shadowstack_pop(rstack);

acc_32_99_146 = frame→ptr;

end_r_294 = frame→endptr;

GibCursor loc_345 = r_356 + 9;

*(GibPackedTag *) r_356 = 0;

GibCursor after_tag_600 = r_356 + 1;

*(GibInt *) after_tag_600 = tmpval_937;

gib_indirection_barrier(loc_345, end_r_356, acc_32_99_146, end_r_294, PList_T);

return reverse(end_r_293, end_r_356, end_r_295, loc_292, tmpcur_938, r_356);

}
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case 1: {

GibCursor jump_412 = xs_31_98_145 + 1;

gib_indirection_barrier(loc_292, end_r_295, acc_32_99_146, end_r_294, PList_T);

GibCursor end_592 = loc_292 + 9;

return (GibCursorProd6) {end_r_293, end_r_294, end_r_295, jump_412, loc_292, end_592};

break;

}

case GIB_INDIRECTION_TAG: {

uintptr_t tagged_tmpcur_17 = *(uintptr_t *) tmpcur_932;

GibCursor tmpcur_956 = GIB_UNTAG(tagged_tmpcur_17);

uint16_t tmptag_958 = GIB_GET_TAG(tagged_tmpcur_17);

GibCursor end_from_tagged_indr_447 = tmpcur_956 + tmptag_958;

GibCursor jump_449 = tmpcur_932 + 8;

GibCursorProd6 tmp_struct_16 = reverse(end_from_tagged_indr_447, end_r_294,

end_r_295, loc_292, tmpcur_956, acc_32_99_146);

return (GibCursorProd6) {end_r_293, tmp_struct_16.field1, tmp_struct_16.field2,

jump_449, tmp_struct_16.field4, tmp_struct_16.field5};

}

case GIB_REDIRECTION_TAG: {

uintptr_t tagged_tmpcur_19 = *(uintptr_t *) tmpcur_932;

GibCursor tmpcur_971 = GIB_UNTAG(tagged_tmpcur_19);

uint16_t tmptag_973 = GIB_GET_TAG(tagged_tmpcur_19);

GibCursor end_from_tagged_indr_447 = tmpcur_971 + tmptag_973;

return reverse(end_from_tagged_indr_447, end_r_294,

end_r_295, loc_292, tmpcur_971, acc_32_99_146);

}

default: {

printf("%s\n", "Unknown tag in: tmpval_931");

exit(1);

}

}

}

Figure 10. reverse translated to C.
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A.3 treeUpdate

loop :: ∀∀∀ 𝑙𝑟 𝑘𝑠.

RNG → Int → Tree@𝑙𝑟 → Tree@𝑘𝑠

loop [𝑙𝑟 𝑘𝑠] rng i tr =

if i == 0

then Ind 𝑘𝑠 (addrOf tr)

else

let (n,rng') = next rng 0 512 in

letregion t in

letloc 𝑗𝑡 = start t in

let tr':Tree@𝑗𝑡 =

if n % 2 == 0

then insert [𝑙𝑟 𝑗𝑡] n tr

else delete [𝑙𝑟 𝑗𝑡] (n-1) tr

in loop rng' (i-1) tr'

insert :: ∀∀∀ 𝑙1
𝑟 𝑘1

𝑠.

Int → Tree@𝑙1
𝑟 → Tree@𝑘1

𝑠

insert [𝑙1
𝑟 𝑘1

𝑠] n tr = case tr of

Null → Leaf 𝑘1
𝑠 n

Node (m:Int@𝑙𝑚
𝑟) (x:Tree@𝑙𝑥

𝑟) (y:Tree@𝑙𝑦
𝑟)→

if m < n then

letloc 𝑘2
𝑠 = 𝑘1

𝑠 + 1 in

let x':Tree@𝑘2
𝑠 =

Ind 𝑘2
𝑠 (addrOf x) in

letloc 𝑘3
𝑠 = after Tree@𝑘2

𝑠 in

let y':Tree@𝑘3
𝑠 =

insert [𝑙𝑦
𝑟 𝑘3

𝑠] n y in

Node 𝑘1
𝑠 m x' y'

else ... −− Insert into the left subtree.
Leaf (m:Int@𝑙𝑚

𝑟) → ...

Figure 11. A LoCal program that repeatedly inserts a random number into a binary search tree.

B Appendix: Implementation Details
B.1 Reordering Tag Allocations
Even though allocations in LoCal happen in order, its formalism requires that a data constructor tag be written after all its fields
are. However, this creates a problem for our collector, which might need to copy a value while it is still under-construction
(Section 3.3). Without the tag present at the beginning of an object, the collector cannot infer what kind of an object it is
copying. We bypass this by reordering the writes such that a data constructor tag always gets written before any of its fields.
Not only does this help the collector, it also makes the mutator slightly more efficient.

B.2 Random-access via shortcut pointers
While indirection pointers enable allocation of values out-of-order, they do not enable reading values out-of-order. To this end,
Gibbon uses untagged shortcut pointers to enable constant-time random-access to certain fields on a per-data-constructor,
per-field basis. The reason shortcut pointers are necessary is that some programs need to “skip over” certain parts of a value to
read it out-of-order, and there is no way to accomplish this if the value is fully serialized—the only way to access a particular
part in it is to scan past all of the data that has been serialized before it. For example, to compile a program which fetches the
rightmost leaf of a binary tree with the correct asymptotic complexiy (𝑂 (𝑙𝑜𝑔𝑛)), Gibbon stores the absolute address of the
right subtree in each intermediate node 7 so that it can be accesssed directly without traversing the left subtree, which would
make this a 𝑂 (𝑛) operation. Figure 4 shows such a node.

Fortunately, shortcut pointers are innocuous with respect to garbage collection because they always point within the same
region, and thus cannot change the lifetime of other regions. In principle, they require less space to store than in a normal
pointer-based representation, because no pointer is needed for the leftmost non-scalar field, e.g. one pointer for a binary tree,
instead of two. A possible implementation choice would be to store the integer size in bytes of packed fields which can be used
to skip over them. For example, the address of the right subtree can be computed as (the address of the left subtree + size of
the left subtree), given that all the fields are serialized side-by-side in a single region. However, the runtime representation of
regions (chunked, growable, as described in the next section) makes this choice slightly less efficient in practice.

B.3 Info-table representation
Figure 12 gives the representation of the info-table used in GC-Gibbon’s runtime system.

C Appendix: Evaluation
C.1 Benchmark descriptions
• reverse: This is the standard accumulator style list-reverse program shown in Figure 3; it reverses a list containing 8M
integers. The Java implementation is defined using a while loop rather than a recursive function.
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type InfoTable = Vec<DatatypeInfo>;

enum DatatypeInfo {

Scalar(usize),

Packed(Vec<DataconInfo>),

}

struct DataconInfo {

/ / / Bytes before the first packed field.
scalar_bytes: usize,

/ / / Number of shortcut pointer fields.
num_shortcut: usize,

/ / / Field types of packed fields.
field_tys: Vec<u32>,

}

Figure 12. The representation of GC-Gibbon’s info-table used in runtime system.

• treeUpdate: This is the complete version of the program given in Figure 11 in the Appendix. It starts with a very small
search tree and repeatedly inserts and deletes numbers in it. The numbers are chosen from small range (0-512) to keep the
size of the tree more or less constant, and the tree is updated 5M times. The Java implementation encodes the outer “update”
loop as an actual while loop, but insert and delete are defined using recursion in the standard way.

• coins: This benchmark is taken from GHC’s NoFib12 benchmark suite. It computes the number of ways in which a
certain amount of money can be paid by using the given set of coins. The input set of coins and their quantities are
[(250,55),(100,88),(25,88),(10,99), (5,122),(1,177)], and the amount to be paid is 999.

• lcss: This benchmark computes the longest-common-substring using Hirschberg’s algorithm. Our implementation is taken
from GHC’s NoFib benchmark suite. We provide as input two strings of length 3100 and 3000 respectively, such that the
result has length 2100.

• power: This benchmark computes 20 elements of the power series
(ts = 1 :+: ts^2), which is shown here assuming lazy evaluation. We use a slightly modified implementation that is suitable
for a strict language.

• buildKdTree and countCorr and allNearest: buildKDTree constructs a kd-tree containing 1M 3-d points in the Plummer
distribution. countCorr takes as input a kd-tree and counts the number of correlated (within a distance of 100 units) points
for all 1M 3-d points. allNearest computes the nearest neighbor of all 1M 3-d points.

• barnesHut: Uses a quad tree to run an nbody simulation over 1M 2-d point-masses distributed uniformly within a square.
• constFold: This benchmark is taken from and implements constant folding for a language that supports integer arithmetic.
It is run on synthetic syntax-tree which is a balanced binary tree of depth 26.

C.2 Parameter sweeps
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(b) treeUpdate
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(d) coins

Figure 13. Run times in seconds of benchmarks using young generations of various sizes. The red line marks the young-
generation size used for measurements reported in Table 1 (4MB).

In this section we discuss the results of three parameter sweeps for small out-of-order allocation benchmarks that stress
the collector. Figure 13 shows the run times of benchmarks using different young-generation sizes. This shows the expected
tradeoff between space and time; the wall-clock time gets better as the young generation gets bigger, due to fewer collections.
Figure 14 shows the run times of benchmarks using different initial chunk sizes for GC-Gibbon. Using bigger initial chunks,
and therefore growing the overall region at a faster rate, causes more collections to occur since the young generation fills up
faster. It also leads to inefficient space usage since many of the larger chunks will be mostly empty.

12https://gitlab.haskell.org/ghc/nofib
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Figure 14. Run times in seconds of benchmarks using initial chunks of varying sizes. Our region size inference analysis
(Section 4) causes GC-Gibbon to allocate constant-sized regions in the main workoad of reverse and coins, thus their run
times are constant. We report the measurements after disabling this optimization as “GC-Gibbon (region size not inferred)”.
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D Appendix: Evacuation Algorithm

1 −− store type layouts per data constructor (static)
2 global info_table[]

3 −− map spans of from-space memory to to-space
4 global fwd_table[]

5 −− map address of value start to its end
6 global skip_table[]

7
8 fun evacuate_root(from_start, ty):

9 if in_oldgen?(from): −− skip root
10 else if already_marked?(from):

11 update_root(fwd_addr(from_start))

12 else:

13 (to_start, to_end) := alloc_oldgen_region()

14 evacuate_object(from_start, ty, to_start)

15 update_root(to_start, to_end)

16
17 −− Returns a pointer into the to-space,
18 −− after the given value
19 fun skip_over(from):

20 −− We can only create a need for skipping if we process
21 −− at least one data constructor in an evacuate_value:
22 assert(not(zero_location?(from)))

23 return skip_table[from]

24
25 −− Returns a pointer in the to-space
26 fun fwd_addr(from):

27 −− For the first location in the region,
28 −− the region metadata lets us forward:
29 if zero_location?(from):

30 return footer_fwd_ptr(region(from))

31 else:

32 while offset < max_scan:

33 let next = deref(from + offset)

34 match(next):

35 Forwarded(addr): return (addr - offset)

36 Burned: offset += 1

37 −− The interval-map maps source to target bytes
38 −− by internally mapping entire
39 −− (src..src+k) => (dst..dst+k) ranges efficiently:
40 −− side metadata lookup = slow path
41 return fwd_table[from]

(a) Part of the evacuation algorithm. Global definitions, helpers, and
entrypoint to begin evacuation. See also figure 15b.

1 −− Recursively evacuate the value at a given location,
2 −− with the given type. Because of the acyclic heap,
3 −− this will never recur back to the same location.
4 fun evacuate_object(from_start, ty, to_start):

5 let ty_stk = [ty]

6 let to = to_start

7 let from = from_start

8 let span_start = from_start

9 let span_bytes = 0

10
11 fun end_span():

12 if span_bytes > max_span:

13 let sz = from - span_start

14 fwd_table[span_start .. sz] := to-sz .. to

15 span_bytes := 0

16 span_start = from

17
18 −− One evacuate-and-burn session
19 −− on one contiguous interval:
20 while (from_ty = pop(ty_stk)):

21 while (chunk_redirection?(from)):

22 forward_obj(from, to)

23 from := deref(from)

24 end_span()

25 if indirection?(from):

26 −− start a separate interval in a new chunk:
27 to' = evacuate_object(deref(from), from_ty, to)

28 forward_obj(from,to)

29 from += TAGGED_INDIRECTION_SIZE

30 to := to'

31 end_span()

32 else if already_marked?(from):

33 to := write_indirection(to, fwd_addr(from))

34 if non_empty?(ty_stk):

35 from := skip_over(from)

36 end_span()

37 else: −− regular data-copying codepath
38 −− advance to,from cursors past
39 −− the data written:
40 (to',from') =

41 write_tag_and_scalars(to, from)

42 −− look up types of 0 or more
43 −− non-scalar data fields (children):
44 push_children(stk, info_table[from])

45 fwded = burn_or_forward_obj(from)

46 to := to'

47 from := from'

48 if fwded: end_span()

49 else: span_bytes += from' - from

50 if not(zero_location?(from_start)):

51 −− Populate for future slowpath lookups
52 −− one byte after the end
53 skip_table[from_start] := to

54 return to

(b) Continued from figure 15a, core burning and forwarding algorithm
for sharing maintenance.

Figure 15. Evacuation algorithm
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